Answer:
Vf = 21 m/s
Explanation:
Data:
Initial Velocity (Vo) = 15 m/sAcceleration (a) = 2.0 m/s²Time (t) = 3 sFinal Velocity (Vf) = ?Use formula:
Vf = Vo + a * tReplace:
Vf = 15 m/s + 2.0 m/s² * 3sMultiply the acceleration with time:
Vf = 15 m/s + 6 m/sSolve the sum:
Vf = 21 m/sThe velocity of the car at the end of the 3 second interval is 21 meters per second.
Answer this and you get 100 points
You better answer it quick though
Answer what? Apologies, but I don't see anything. (。>︿<)
A ball is rolling with a constant acceleration of 13 m/s starting from rest. How long will it take to increase its velocity to a final speed of 62 m/s?
Time taken : 4.77 s
Further explanationGiven
a = 13 m/s²
vf = final velocity = 62 m/s
Required
time taken
Solution
An equation of uniformly accelerated motion
[tex]\large {\boxed {\bold {x=xo+vo.t+\frac {1} {2} at ^ 2}}}[/tex]
vf = vo + at
vf² = vo² + 2a (x-xo)
x = distance on t
vo / vi = initial speed
vt / vf = speed on t / final speed
a = acceleration
Input the value :
vo =0 ⇒from rest
vf=at
62 m/s = 13 m/s².t
t = 62 : 13
t = 4.77 s
plsss answer this plsss answer this plsss answer this plsss answer this
Answer:
I dont see file
dndndndbnfbfbfbfbfbf
Answer:
ye ek rod h or electric ⚡ field h P point
Desperado, a roller coaster built in Nevada, has a mass of 800 kg. It also has a vertical drop of 225 feet down the first hill. The roller coaster is designed so that the speed of the cars at the end of this drop is 80 mi/h. Assume the cars are at rest at the start of the drop. How much work is done by friction on the car as it drops down the hill
Answer:
the work done by friction on the car is 524,582 J.
Explanation:
Given;
mass of the roller coaster, m = 800 kg
distance moved by the coaster, d = 225 ft = 68.58 m
final velocity of the coaster, v = 80 mi/h = 35.76 m/s
The time taken for the coaster to drop down the hill is calculated as;
[tex]t = \sqrt{\frac{2h}{g} } \\\\t = \sqrt{\frac{2\ \times \ 68.58}{9.8} } \\\\t = 3.74 \ s[/tex]
The work done by friction on the car is calculated as;
[tex]W =F\ \times \ d = \frac{mv}{t} \times \ d\\\\W = \frac{800 \ \times \ 35.76 }{3.74} \times \ 68.58\\\\W = 524,582 \ J[/tex]
Therefore, the work done by friction on the car is 524,582 J.
True Or False weather conditions in the atmosphere can be recognized through direct observation.
Answer:
yes, we can tell if there will be rain by the swelling in rain clouds, we can also see if a tornado is forming based on the look of the wall cloud. we can use satellites to predict the amount of precipitation or wind.
Explanation:
thank you for ur generosity
Problem 6: A bullet in a gun is accelerated from rest from the firing chamber to the end of the barrel at an average rate of 6.3 × 105 m/s2 for 8.2 × 10-4 s.Ball,removedc795646bb4371e1754411a7dadf94458c503446af1b6450bb3269c1f97e8ef53removedremoved58b1e9a401041b69266daacea519e828d050d14013adc67f8c64697e40f2ef89removedtheexpertta - tracking id: 0W86-2A-6A-4E-962A-28979. In accordance with Expert TA's Terms of Service. copying this information to any solutions sharing website is strictly forbidden. Doing so may result in termination of your Expert TA Account.show answer No Attempt What is the gun’s muzzle velocity (that is, the bullet’s final speed), in meters per second
Answer:
v = 5.166 10² m / s
Explanation:
We can solve this exercise using the kinematics equations
v = v₀ + at
as the bullet starts from rest its initial velocity is zero
v = a t
let's calculate
v = 6.3 10⁵ 8.2 10⁻⁴
v = 5.166 10² m / s
Sarah took 204 seconds to bicycle to their grandmother's house, a total of
430 meters. What was their velocity in m/s?
Answer:
2.1m/s towards your grandmother's house
Explanation:
Given parameters:
Time taken = 204s
Distance = 430m
Unknown:
Velocity = ?
Solution:
The velocity is determined by:
Velocity = [tex]\frac{displacement}{time}[/tex]
Velocity = [tex]\frac{430}{204}[/tex] = 2.1m/s towards your grandmother's house
On a scale of 1-10 how much do you care of what people think of you?
Answer:
3
Explanation:
my family i hope thinks of me. And I don't have friends for them to think of me.
What simple machine can best be described as "a simple machine that uses an inclined plane wrapped around a rod"? *
a wedge
a screw
a wheel and axle
a lever
Which image best illustrates diffraction
Answer:
There is no image
Explanation:
Answer: Send me image than I will be able to help
Explanation:
What is the mass of a block concrete that gains 52,800 joules of energy when its temperature is increased by 5 degrees Celsius specific heat of concrete 880 J/K degrees Celsius
Answer:
12 kg
Explanation:
q = 52,800 J
c = 880 J/(kg * K) Pretty sure you missed the kg here
ΔT = 5 °C = 5 K (reminder that this only applies to ΔT and not T)
q = mcΔT ⇒ m = q/(cΔT) = 52,800 J / (880 J/(kg * K) * 5 K) = 12 kg
The mass of a block concrete that gains 52,800 joules of energy when its temperature is increased by 5 degrees Celsius specific heat of concrete 880 J/K degrees Celsius is 12kg
The formula for calculating the quantity of heat energy absorbed by the block is expressed as:
Q = mcΔt
Q is the quantity of heat = 52,800 Joules
m is the mass of the concrete
c is the specific heat of concrete = 880 J/K
Δt is the change in temperature = 5 degrees
substitute the given values into the formula:
[tex]52800=m(880)(5)\\52800 = 4400m\\m=\frac{52800}{4400}\\m= 12kg[/tex]
Hence the mass of a block of concrete that gains 52,800 joules of energy when its temperature is increased by 5 degrees Celsius specific heat of concrete 880 J/K degrees Celsius is 12kg
Learn more here: https://brainly.com/question/22991121
What term is used to describe DNA Replication?
Conservative
Un-conservative
Non-conservative
Semi-conservative
Answer:
Semi-conservative
Explanation:
Each strand of the original DNA molecule serves as a template for the production of its counterpart
A clump of soft clay is thrown horizontally from 9.80 m above the ground with a speed of 20.0 m/s. Assume it sticks in place when it hits the ground At what time will the clay hit the ground
Answer:
Explanation:
The time to hit the ground will be same as time taken to fall from the height of 9.8 m with initial vertical velocity of zero .
Considering vertical displacement
initial velocity u = 0
displacement s = 9.8 m
acceleration a = g = 9.8 m /s²
time t = ?
s = ut + 1/2 g t²
9.8 = 0 + .5 x 9.8 x t²
t² = 2
t = √2 = 1.4 s
4. Sally applies a horizontal force of 462 N with a rope to drag a wooden crate across a floor with a constant speed. The rope tied to the crate is pulled at an angle of 56.00 . c.What work is done by the floor through force of friction between the floor and the crate
Answer:
-6,329.5Joules
Explanation:
Complete question:
Sally applies a horizontal force of 462N with a rope to drag a wooden crate across a floor with a constant speed the rope tied to the crate is pulled at an angle of 56.0degree and sally moves the crate 24.5m. What work is done by the floor through the force of friction between the floor and crate.
Work done = Fd cos theta
F is the horizontal force
d is the distance covered
theta angle of inclination
Substituting into the formula
Workdone = 462(24.5)cos 56
Workdone = 11,319(0.5592)
Workdone = 6,329.5Joules
Hence the workdone by sally is 6,329.5Joules
The work done by friction will be opposite the work done by sally, hence work done by the floor through force of friction between the floor and the crate is -6,329.5Joules
A star can give off white light. Why is this evidence that a star is a blackbody
radiator?
A. White light is made up of many different wavelengths of light.
B. The star reflects the white light.
C. The star absorbs the white light.
D. White light is only one wavelength of light.
O
Answer:
It's A. White light is made up of many different wavelengths of light.
A 97.1 kg horizontal circular platform rotates freely with no friction about its center at an initial angular velocity of 1.63 rad/s . A monkey drops a 8.97 kg bunch of bananas vertically onto the platform. They hit the platform at 45 of its radius from the center, adhere to it there, and continue to rotate with it. Then the monkey, with a mass of 22.1 kg , drops vertically to the edge of the platform, grasps it, and continues to rotate with the platform. Find the angular velocity of the platform with its load. Model the platform as a disk of radius 1.73 m .
Answer:
the final angular velocity of the platform with its load is 1.0356 rad/s
Explanation:
Given that;
mass of circular platform m = 97.1 kg
Initial angular velocity of platform ω₀ = 1.63 rad/s
mass of banana [tex]m_{b}[/tex] = 8.97 kg
at distance r = 4/5 { radius of platform }
mass of monkey [tex]m_{m}[/tex] = 22.1 kg
at edge = R
R = 1.73 m
now since there is No external Torque
Angular momentum will be conserved, so;
mR²/2 × ω₀ = [ mR²/2 + [tex]m_{b}[/tex] ([tex]\frac{4}{5}[/tex] R)² + [tex]m_{m}[/tex]R² ]w
m/2 × ω₀ = [ m/2 + [tex]m_{b}[/tex] ([tex]\frac{4}{5}[/tex] )² + [tex]m_{m}[/tex] ]w
we substitute
w = 97.1/2 × 1.63 / ( 97.1/2 + 8.97(16/25) + 22.1
w = 48.55 × [ 1.63 / ( 48.55 + 5.7408 + 22.1 )
w = 48.55 × [ 1.63 / ( 76.3908 ) ]
w = 48.55 × 0.02133
w = 1.0356 rad/s
Therefore; the final angular velocity of the platform with its load is 1.0356 rad/s
Three people pull simultaneously on a stubborn donkey. Jack pulls eastward with a force of 80.5 N, Jill pulls with 81.7 N in the northeast direction, and Jane pulls to the southeast with 131 N. (Since the donkey is involved with such uncoordinated people, who can blame it for being stubborn
Answer:
F = 233.52 N, θ' = 351.41º
Explanation:
In this exercise we must find the net force applied on the donkey.
For this we use Newton's second law, where we create a reference frame with the horizontal x axis
let's decompose the forces
Jack
= 80.5 N
Jill
cos 45 = F_{2x} / F₂2
sin 45 = F_{2y} / F₂2
F_{2x} = F₂ cos 45
F_{2y} = F₂ sin 45
F_{2x} = 81.7 cos 45 = 57.77 N
F_{2y} = 81.7 sin 45 = 57.77 N
Jane
cos (270 + 45) = F_{3x} / F₃3
sin 315 = F_{3y} / F₃
F_{3x} = 131 cos 315 = 92.63 N
F_{3y} = 131 sin 315 = -92.63 N
the force can be found in each axis
X axis
F_{x} = F_{1x} + F_{2x} + F_{3x}
F_{x} = 80.5 +57.77 + 92.63
F_{x} = 230.9 N
Axis y
F_{y} = F_{1y} + F_{2y} + F_{3y}
F_{y} = 0 + 57.77 -92.63
F_{y} = -34.86 N
we can give the result in two ways
a) F = (230.9 i ^ - 34.86 j ^) N
b) in the form of module and angle
we use the Pythagorean theorem
F = √(Fₓ² + F_{y}²
F = √(230.9² + 34.86²)
F = 233.52 N
let's use trigonometry for the angle
tan θ = [tex]\frac{F_y}{F_x} }[/tex]
θ = tan⁻¹ (\frac{F_y}{F_x} })
θ = tan⁻¹ (-34.86 / 230.9)
θ = -8.59º
if we measure this angle from the positive side of the x-axis counterclockwise
θ' = 360 -θ
θ‘= 360- 8.59
θ' = 351.41º
You are working as a letter sorter in a U.S. Post Office. Postal regulations require that employees' footwear must have a minimum coefficient of static friction of 0.5 on a specified tile surface. You are wearing athletic shoes for which you do not know the coefficient of static friction. In order to determine the coefficient, you imagine that there is an emergency and start running across the room. You have a coworker time you, and find that you can begin at rest and move 4.38 m in 1.21 s. If you try to move faster than this, your feet slip. Assuming your acceleration is constant, does your footwear qualify for the postal regulation?
Answer:
μ = 0.66, therefore if it compiesy with the regulations
Explanation:
Let's solve this exercise in part, let's start by finding with kinematics the acceleration of man
y = v₀ t + ½ a t²
as it starts from rest the initial velocity is zero
y = ½ a t²
a = [tex]\frac{2y}{t^2}[/tex]
a =\frac{2 \ 4.38}{1.21^2}
a = 6.46 m / s²
Now let's use Newton's second law,
Axis y
N- W = 0
N = W
N = m g
X axis
on this axis the man exerts a backward force and by the law of action and reaction the floor exerts a forward force of the same magnitude, this forward force is the friction force.
fr = m a
the friction force has an expression
fr = my N
let's substitute
μ mg = m a
μ = a / g
let's calculate
μ = 6.46 / 9.8
μ = 0.66
therefore if you comply with the regulations
A hiker walks 7.7 miles to the east in 3.6 hours, then turns around and walks 2.1 miles to the west in 2.4 hours. What was the magnitude of her average velocity during the trip?
Answer:
2.18 miles per hour
Explanation:
Given:
A hiker walks 7.7 miles to the east in 3.6 hours.
A hiker walks 2.1 miles to the west in 2.4 hours
To find: magnitude of average velocity during the trip
Solution:
Total distance = 7.7 + 2.1 = 9.8 miles
Total Time = 2.1 + 2.4 = 4.5 hours
Average velocity = Total distance ÷ Total Time =[tex]\frac{9.8}{4.5}=2.18[/tex] miles per hour
.1 An 8-ft 3 tank contains air at an initial temperature of 808F and initial pressure of 100 lbf/in. 2 The tank develops a small hole, and air leaks from the tank at a constant rate of 0.03 lb/s for 90 s until the pressure of the air remaining in the tank is 30 lbf/in. 2 Employing the ideal gas model, determine the final temperature, in 8F, of the air remaining in the tank
Correct temperature is 80°F
Answer:
T_f = 38.83°F
Explanation:
We are given;
Volume; V = 8 ft³
Initial Pressure; P_i = 100 lbf/in² = 100 × 12² lbf/ft²
Initial temperature; T_i = 80°F = 539.67 °R
Time for outlet flow; t_o = 90 s
Mass flow rate at outlet; m'_o = 0.03 lb/s
Final pressure; P_f = 30 lbf/in² = 30 × 12² lbf/ft²
Now, from ideal gas equation,
Pv = RT
Where v is initial specific volume
R is ideal gas constant = 53.33 ft.lbf/°R
Thus;
v = RT/P
v_i = 53.33 × 539.67/(100 × 12²)
v_i = 2 ft³/lb
Formula for initial mass is;
m_i = V/v_i
m_i = 8/2
m_i = 4 lb
Now change in mass is given as;
Δm = m'_o × t_o
Δm = 0.03 × 90
Δm = 2.7 lb
Now,
m_f = m_i - Δm
Thus; m_f = 4 - 2.7
m_f = 1.3 lb
Similarly in above;
v_f = V/m_f
v_f = 8/1.3
v_f = 6.154 ft³/lb
Again;
Pv = RT
Thus;
T_f = P_f•v_f/R
T_f = (30 × 12² × 6.154)/53.33
T_f = 498.5°R
Converting to °F gives;
T_f = 38.83°F
The final temperature, in °F, of the air remaining in the tank is 38.83°F
It is given that volume V = 8 ft³
Initial Pressure Pi = 100 lbf/in² = 100 × 12² lbf/ft²
Initial temperature Ti = 80°F = 539.67 °R
Time for outlet flow; to = 90 s
Mass flow rate at outlet; m'o = 0.03 lb/s
Final pressure; Pf = 30 lbf/in² = 30 × 12² lbf/ft²
Now, from ideal gas equation,
Pv = RT
where v is initial volume, R is ideal gas constant = 53.33 ft.lbf/°R
[tex]v = RT/P\\ \\ v_i = 53.33 *539.67/(100*12^2)\\ \\ v_i = 2 ft^3/lb [/tex]
The initial mass is;
[tex]m_i = V/v_i\\ \\ m_i = 8/2\\ \\ m_i = 4 lb [/tex]
Now change in mass is given as;
Δm = [tex]m'_o*t_o[/tex]
Δm = 0.03 × 90
Δm = 2.7 lb
[tex]m_f[/tex] = [tex]m_i[/tex] - Δm
[tex]m_f[/tex] = 4 - 2.7
[tex]m_f[/tex] = 1.3 lb
now,
[tex]v_f = V/m_f\\ \\ v_f = 8/1.3\\ \\ v_f = 6.154 f^3/lb [/tex]
From the gas equation
Pv = RT
Final state:
[tex]T_f = P_fv_f/R\\\\ T_f = (30*12^2*6.154)/53.33\\\\ T_f = 498.5^oR [/tex]
Converting to °F:
[tex]T_f[/tex] = 38.83°F is the final temperature.
Learn More:
https://brainly.com/question/18518493
The moon accelerates because it is
A. in a vacuum in space.
B. continuously changing direction.
C. a very large sphere.
D. constantly changing its shape.
Answer:
the Answer is b
Explanation:
because the moon usually orbits around our solar system
As the moon continuously changing direction, it accelerates.
Option B. is correct.
Define acceleration.The rate at which an object's velocity changes with respect to time is called acceleration. Accelerations are measured in terms of vectors. The orientation of the net force acting on an object determines the orientation of its acceleration.
The Moon is kept in orbit around us by the gravity of the Earth. It constantly shifting the Moon's velocity direction. This means that, despite its constant speed, gravity causes the Moon to accelerate all the time.
So, as the moon continuously changing direction, it accelerates.
Option B. is correct.
Find out more information about acceleration here:
https://brainly.com/question/2437624?referrer=searchResults
6. The petrol in a petrol can weighs 2000g. The density of petrol is 0.8g/cm3.
What is the volume of the petrol in the can in a) cm3 b)litres (1000cm3=1 litre)
Pls help :((
Answer:
a. 2500 cm³.
b. 2.5 litres.
Explanation:
Given the following data:
Density = 0.8g/cm³
Mass = 2000g
To find the volume of the petrol;
Density can be defined as mass all over the volume of an object.
Simply stated, density is mass per unit volume of an object.
Mathematically, density is given by the equation;
[tex]Density = \frac{mass}{volume}[/tex]
Making volume the subject of formula, we have;
[tex]Volume = \frac{mass}{density}[/tex]
Substituting into the equation, we have:
[tex]Volume = \frac{2000}{0.8}[/tex]
Volume = 2500 cm³
a. The volume of the petrol in the can in cubic centimeters (cm³) is 2000.
b. The volume of the petrol in the can in litres;
1000 cm³ = 1 litre
2500 cm³ = x litres
Cross-multiplying, we have;
1000x = 2500
x = 2500/1000
x = 2.5 litres.
Therefore, the volume of the petrol in the can in litres is 2.5.
formula for percentage error
Answer:
PE = (|accepted value – experimental value| \ accepted value) x 100%
Explanation:
Explain two reasons why astronomers are continually building larger and larger telescopes. Explain two reasons why astronomers are continually building larger and larger telescopes. Larger telescope mirrors have a larger surface area and can therefore collect more light, which makes faint objects bright enough to detect. Also, larger telescope mirrors produce more scattering of light due to diffraction, which contributes to better angular resolution. Larger telescope mirrors have a larger surface area and can therefore collect more light, which contributes to better angular resolution. Also, larger telescope mirrors produce more scattering of light due to diffraction, which makes faint objects bright enough to detect. Larger telescope mirrors have a larger surface area and can therefore collect more light, which contributes to better angular resolution. Also, larger telescope mirrors produce less scattering of light due to diffraction, which makes faint objects bright enough to detect. Larger telescope mirrors have a larger surface area and can therefore collect more light, which makes faint objects bright enough to detect. Also, larger telescope mirrors produce less scattering of light due to diffraction, which contributes to better angular resolution.
Answer:
* Larger mirrors collect more light and therefore fainter and more distant objects can have enough intensity to be detected
* arger mirrors decreases the angle of dispersion giving a better resolution of the bodies
Explanation:
Refracting telescopes get bigger every day for two main reasons.
* Larger mirrors collect more light and therefore fainter and more distant objects can have enough intensity to be detected
* the diffraction process for circular apertures is given by
θ = 1.22 λ / D
where d is the diameter of the mirror, therefore having larger mirrors decreases the angle of dispersion giving a better resolution of the bodies
What is the frequency of a wave of a light is with a wavelength of 4 x 10-7 m?
Answer:
7.5 × 10^14 Hz
Velocity of light = 3×10^8m/s
Frequency = (3×10^8)/(4 x 10^-7)
= 7.5 × 10^14 Hz
Describe the political actions that led to successful conservation in both stories.
Answer:
The political actions that led to successful conservation in both stories were what they call an FC company that makes the forest industry true. They make it out of a factory and it can make it very successful and accomplished.
Explanation:
write short note on fulcrum
Answer:
The definition of a fulcrum is a pivot point around which a lever turns, or something that plays a central role in or is in the center of a situation or activity.
A 3" diameter germanium wafer that is 0.020" thick at 300K has 1.015 x 10^17 As atoms added to it. What is the resistivity of the wafer? Germanium has 4.42 x10^22 atoms/cc, electron and hole mobilities are 3900 and 1900 cm^2/(V*s). What is the resistivity of the Ge in ohm*microns?
Answer:
0.546 ohm / μm
Explanation:
Given that :
N = 1.015 * 10^17
Electron mobility, u = 3900
Hole mobility, h = 1900
Ng = 4.42 x10^22
q = 1.6*10^-19
Resistivity = 1/qNu
Resistivsity (R) = 1/(1.6*10^-19 * 1.015 * 10^17 * 3900)
= 0.01578880889 ohm /cm
Resistivity of germanium :
R = 1 / 2q * sqrt(Ng) * sqrt(u*h)
R = 1 / 2 * 1.6*10^-19 * sqrt(4.42 x10^22) * sqrt(3900*1900)
R = 1 /0.0001831
R = 5461.4964 ohm /cm
5461.4964 / 10000
0.546 ohm / μm
Before working this problem, review Conceptual Example 14. A pellet gun is fired straight downward from the edge of a cliff that is 14.7 m above the ground. The pellet strikes the ground with a speed of 27.2 m/s. How far above the cliff edge would the pellet have gone had the gun been fired straight upward
Answer:
23.04 m
Explanation:
We'll begin by calculating the initial velocity of the pellet. This can be obtained as follow:
Height (h) of cliff = 14.7 m
Final velocity (v) = 27.2 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Initial velocity (u) =?
v² = u² + 2gh
27.2² = u² + (2 × 9.8 × 14.7)
739.84 = u² + 288.12
Collect like terms
u² = 739.84 – 288.12
u² = 451.72
Take the square root of both side
u = √451.72
u = 21.25 m/s
Thus, the initial velocity of the pellet is 21.25 m/s.
Finally, we shall determine the maximum height to which the pellet would have gone assuming the gun was fired straight upward. This can be obtained as follow:
Initial velocity (u) = 21.25 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Final velocity (v) = 0 m/s (at maximum height)
Maximum height (h) =?
v² = u² – 2gh (since the pellet is going against gravity.
0² = 21.25² – (2 × 9.8 × h)
0 = 451.5625 – 19.6h
Collect like terms
0 – 451.5625 = –19.6h
–451.5625 = –19.6h
Divide both side by –19.6
h = –451.5625 / –19.6
h = 23.04 m
Therefore, the pellet will reach a maximum height of 23.04 m above the cliff.
Which is an advantage of storing data digitally?
A. It is easy to change the data if you have the right computer
programs.
B. It is easy to copy a computer virus to a device along with the data.
C. The quality of copies decrease as more copies are made.
D. Other people can access personal data from unsecured devices.
Answer:
A
Explanation:
Because I said so
Answer:
A
Explanation:
i took the test and got it right please mark me ❤️