f(x)=√x
g(x) = √ 2 - x, find (fºg)x.

Answers

Answer 1

Answer:

∘g(x)=2x2−4x−3. And g∘f(x)=(2x−3)(2x−5)


Related Questions

Which ratio is equal to 27 : 81?

Answers

3:9 and if you reduce it again, 1:3

Answer:

1:3

Step-by-step explanation:

27 : 81

Divide each side by 27

27/27 : 81/27

1:3

Rope pieces of lengths 45 cm, 75 cm and 81 cm have to be cut into same size pieces. What is the smallest piece length possible?​

Answers

Answer:

2025 cm

Step-by-step explanation:

Given the length of pieces - 45 cm, 75 cm and 81 cm

To find the length of the rope we have to find the L.C.M. of 45, 75 and 81 :

       

3  |  45, 75, 81

    | ________________      

3  |  15, 25, 27

    |________________

3  |    5, 25, 9

    |________________

3  |    5, 25, 3

    |________________

5  |    5, 25, 1

    |________________

5  |     1, 5, 1

    |________________

    |      1, 1, 1

     

L.C.M. = 3 × 3 × 3 × 3 × 5 × 5

= 2025 cm

So, the least length of the rope should be 2025 cm which can be cut into a whole number of pieces of length 45 cm, 75 cm and 81 cm.

lim ₓ→∞ (x+4/x-1)∧x+4​

Answers

It looks like the limit you want to find is

[tex]\displaystyle \lim_{x\to\infty} \left(\frac{x+4}{x-1}\right)^{x+4}[/tex]

One way to compute this limit relies only on the definition of the constant e and some basic properties of limits. In particular,

[tex]e = \displaystyle\lim_{x\to\infty}\left(1+\frac1x\right)^x[/tex]

The idea is to recast the given limit to make it resemble this definition. The definition contains a fraction with x as its denominator. If we expand the fraction in the given limand, we have a denominator of x - 1. So we rewrite everything in terms of x - 1 :

[tex]\left(\dfrac{x+4}{x-1}\right)^{x+4} = \left(\dfrac{x-1+5}{x-1}\right)^{x-1+5} \\\\ = \left(1+\dfrac5{x-1}\right)^{x-1+5} \\\\ =\left(1+\dfrac5{x-1}\right)^{x-1} \times \left(1+\dfrac5{x-1}\right)^5[/tex]

Now in the first term of this product, we substitute y = (x - 1)/5 :

[tex]\left(\dfrac{x+4}{x-1}\right)^{x+4} = \left(1+\dfrac1y\right)^{5y} \times \left(1+\dfrac5{x-1}\right)^5[/tex]

Then use a property of exponentiation to write this as

[tex]\left(\dfrac{x+4}{x-1}\right)^{x+4} = \left(\left(1+\dfrac1y\right)^y\right)^5 \times \left(1+\dfrac5{x-1}\right)^5[/tex]

In terms of end behavior, (x - 1)/5 and x behave the same way because they both approach ∞ at a proportional rate, so we can essentially y with x. Then by applying some limit properties, we have

[tex]\displaystyle \lim_{x\to\infty} \left(\frac{x+4}{x-1}\right)^{x+4} = \lim_{x\to\infty} \left(\left(1+\dfrac1x\right)^x\right)^5 \times \left(1+\dfrac5{x-1}\right)^5 \\\\ = \lim_{x\to\infty}\left(\left(1+\dfrac1x\right)^x\right)^5 \times \lim_{x\to\infty}\left(1+\dfrac5{x-1}\right)^5 \\\\ =\left(\lim_{x\to\infty}\left(1+\dfrac1x\right)^x\right)^5 \times \left(\lim_{x\to\infty}\left(1+\dfrac5{x-1}\right)\right)^5[/tex]

By definition, the first limit is e and the second limit is 1, so that

[tex]\displaystyle \lim_{x\to\infty} \left(\frac{x+4}{x-1}\right)^{x+4} = e^5\times1^5 = \boxed{e^5}[/tex]

You can also use L'Hopital's rule to compute it. Evaluating the limit "directly" at infinity results in the indeterminate form [tex]1^\infty[/tex].

Rewrite

[tex]\left(\dfrac{x+4}{x-1}\right)^{x+4} = \exp\left((x+4)\ln\dfrac{x+4}{x-1}\right)[/tex]

so that

[tex]\displaystyle \lim_{x\to\infty} \left(\frac{x+4}{x-1}\right)^{x+4} = \lim_{x\to\infty}\exp\left((x+4)\ln\dfrac{x+4}{x-1}\right) \\\\ = \exp\left(\lim_{x\to\infty}(x+4)\ln\dfrac{x+4}{x-1}\right) \\\\ =\exp\left(\lim_{x\to\infty}\frac{\ln\dfrac{x+4}{x-1}}{\dfrac1{x+4}}\right)[/tex]

and now evaluating "directly" at infinity gives the indeterminate form 0/0, making the limit ready for L'Hopital's rule.

We have

[tex]\dfrac{\mathrm d}{\mathrm dx}\left[\ln\dfrac{x+4}{x-1}\right] = -\dfrac5{(x-1)^2}\times\dfrac{1}{\frac{x+4}{x-1}} = -\dfrac5{(x-1)(x+4)}[/tex]

[tex]\dfrac{\mathrm d}{\mathrm dx}\left[\dfrac1{x+4}\right]=-\dfrac1{(x+4)^2}[/tex]

and so

[tex]\displaystyle \exp\left(\lim_{x\to\infty}\frac{\ln\dfrac{x+4}{x-1}}{\dfrac1{x+4}}\right) = \exp\left(\lim_{x\to\infty}\frac{-\dfrac5{(x-1)(x+4)}}{-\dfrac1{(x+4)^2}}\right) \\\\ = \exp\left(5\lim_{x\to\infty}\frac{x+4}{x-1}\right) \\\\ = \exp(5) = \boxed{e^5}[/tex]

A scale drawn on the map shows that 1 inch represents 40 miles. If tuo cities
are 25 inches apart on the map, what is the distance between them in real
life?

Answers

Answer:

Im pretty sure its 1,000 miles (dont forget the unit)

Step-by-step explanation:

Determine if this problem is a inverse variation or direct variation problem! This means that:

equation would be:

1=40

25=x

cross multiply*

x=25*40

x=1,000 miles apart! (dont forget the unit)

If this doesnt work then try this equation!

1=40

25=x

Multiply 1*40 and 25 *x

40=25x......    

40/25= 1.6

x=1.6! (Extra step)

Cheers!

Answer: 100 Miles

Step-by-step explanation: took the miles and got it correct.

(Also it's 2.5 inches apart, not 25.)

Air is being pumped into a spherical balloon at a rate of 5 cm^3/min. Determine the rate at which the radius of the balloon is increasing when the diameter of the balloon is 20 cm

Answers

0.08 cm/min

Step-by-step explanation:

Given:

[tex]\dfrac{dV}{dt}=5\:\text{cm}^3\text{/min}[/tex]

Find [tex]\frac{dr}{dt}[/tex] when diameter D = 20 cm.

We know that the volume of a sphere is given by

[tex]V = \dfrac{4\pi}{3}r^3[/tex]

Taking the time derivative of V, we get

[tex]\dfrac{dV}{dt} = 4\pi r^2\dfrac{dr}{dt} = 4\pi\left(\dfrac{D}{2}\right)^2\dfrac{dr}{dt} = \pi D^2\dfrac{dr}{dt}[/tex]

Solving for [tex]\frac{dr}{dt}[/tex], we get

[tex]\dfrac{dr}{dt} = \left(\dfrac{1}{\pi D^2}\right)\dfrac{dV}{dt} = \dfrac{1}{\pi(20\:\text{cm}^2)}(5\:\text{cm}^3\text{/min})[/tex]

[tex]\:\:\:\:\:\:\:= 0.08\:\text{cm/min}[/tex]

how long does it take for a deposit of $900 to double at 2% compounded continuously?
how many years does it take to double ? ___ years __ days

Answers

9514 1404 393

Answer:

34.6574 years34 years, 239.94 days

Step-by-step explanation:

For continuous compounding the "rule of 69" applies. That is the doubling time can be found from ...

  t = 69.3147/r . . . . where r is the interest rate in percent.

Here, r=2, so ...

  t = 69.3147/2 = 34.6574 . . . years

That's 34 years and 240 days.

Which number line represents the solutions to 1-2x = 4?

Answers

Answer:

The third choice down

Step-by-step explanation:

|-2x| = 4

There are two solutions, one positive and one negative

-2x = 4  and -2x = -4

Divide by -2

-2x/-2 = 4/-2    -2x/-2 = -4/-2

x = -2   and x = 2

Last Thursday, each of the students in M. Fermat's class brought one piece of fruit to school. Each brought an apple, a banana, or an orange. In total, 20% of the students brought an apple and 35% brought a banana. If 9 students brought oranges, how many students were in the class

Answers

Answer:

20 students

Step-by-step explanation:

Step 1:

Calculate the percentage of students who brought oranges by taking away the percentage of students who brought bananas and apples from the total percentage of students.

100-(20+35)

=45

Step 2:

Equate the percentage of students who brought oranges to the number of students who brought oranges

45%=9

100%

(100×9)/45

=20 students

At snack time, Ms. Rivera passes out 24 cookies to her class. She also passes out 1 glass of lemonade to each student. This equation correctly represents the total number of items distributed, where a is the number of students in the class.

a(2+1)=36
What is the value of a?

Answers

Answer:  a = 12

=======================================================

Explanation:

Let's solve the given equation for the variable 'a'

a(2+1) = 36

a*(3) = 36

3a = 36

a = 36/3

a = 12

There are 12 students in the class. This must mean there are 12 lemonades, because each person gets 1 lemonade.

Since there are 24 cookies, each student gets 24/12 = 2 cookies

Since each student gets 2 cookies and 1 lemonade, this is where the "2+1" comes from in the original equation. Each student gets 3 items total, which explains the notation 3a.

The value of 'a' from the given expression would be 13.

Given that;

At snack time, Ms. Rivera passes out 24 cookies to her class. She also passes out 1 glass of lemonade to each student.

Here, the equation is,

a(2+1)=36

Solve for a;

a × 3 = 36

3a = 36

Divide both sides by 3;

a = 36/3

a = 13

Thus, the value of a is 13.

Learn more about the equation visit:

brainly.com/question/28871326

#SPJ3

What is the slope of the line that passes through the points (4, 10) and (1,10)?
Write
your answer in simplest form.

Answers

Answer:

0

Step-by-step explanation:

We have two points so we can use the sloe formula

m = (y2-y1)/(x2-x1)

   = ( 10-10)/(1-4)

  = 0/ -3

  = 0

Answer:

Slope is 0

explanation:

Slope is the same as gradient.

Formular:

[tex]{ \boxed{ \bf{slope = \frac{y _{2} - y _{1}}{x _{2} - x _{1} } }}}[/tex]

Substitute the variables:

[tex]{ \tt{slope = \frac{10 - 10}{1 - 4} }} \\ \\ = { \tt{ \frac{0}{ - 3} }} \\ = 0[/tex]

The median for the given set of six ordered data values is 29.5

9 12 25​_ 41 50
What is the missing​ value?

Answers

Answer:

34

Step-by-step explanation:

let the missing value is x

(25+x) /2 = 29.5

25+x = 29.5(2)

25+x = 59

x = 59-25

x = 34

What is the area of this triangle?
Enter your answer in the box.
units2

Answers

Answer:

8 units^2

Step-by-step explanation:

The area of a tringle is 1/2 bh. The base, LK, measures 4 while the height is also 4(you can get these values by counting the squares). This means the area is:

1/2 * (4)(4) = 1/2 * 16 = 8 units^2

If sin x = –0.1 and 270° < x < 360°, what is the value of x to the nearest degree?

Answers

Answer:

354°15'38.99''

Step-by-step explanation:

use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​

Answers

First check the characteristic solution: the characteristic equation for this DE is

r ² - 3r + 2 = (r - 2) (r - 1) = 0

with roots r = 2 and r = 1, so the characteristic solution is

y (char.) = C₁ exp(2x) + C₂ exp(x)

For the ansatz particular solution, we might first try

y (part.) = (ax + b) + (cx + d) exp(x) + e exp(3x)

where ax + b corresponds to the 2x term on the right side, (cx + d) exp(x) corresponds to (1 + 2x) exp(x), and e exp(3x) corresponds to 4 exp(3x).

However, exp(x) is already accounted for in the characteristic solution, we multiply the second group by x :

y (part.) = (ax + b) + (cx ² + dx) exp(x) + e exp(3x)

Now take the derivatives of y (part.), substitute them into the DE, and solve for the coefficients.

y' (part.) = a + (2cx + d) exp(x) + (cx ² + dx) exp(x) + 3e exp(3x)

… = a + (cx ² + (2c + d)x + d) exp(x) + 3e exp(3x)

y'' (part.) = (2cx + 2c + d) exp(x) + (cx ² + (2c + d)x + d) exp(x) + 9e exp(3x)

… = (cx ² + (4c + d)x + 2c + 2d) exp(x) + 9e exp(3x)

Substituting every relevant expression and simplifying reduces the equation to

(cx ² + (4c + d)x + 2c + 2d) exp(x) + 9e exp(3x)

… - 3 [a + (cx ² + (2c + d)x + d) exp(x) + 3e exp(3x)]

… +2 [(ax + b) + (cx ² + dx) exp(x) + e exp(3x)]

= 2x + (1 + 2x) exp(x) + 4 exp(3x)

… … …

2ax - 3a + 2b + (-2cx + 2c - d) exp(x) + 2e exp(3x)

= 2x + (1 + 2x) exp(x) + 4 exp(3x)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

x : 2a = 2

1 : -3a + 2b = 0

exp(x) : 2c - d = 1

x exp(x) : -2c = 2

exp(3x) : 2e = 4

Solving the system gives

a = 1, b = 3/2, c = -1, d = -3, e = 2

Then the general solution to the DE is

y(x) = C₁ exp(2x) + C₂ exp(x) + x + 3/2 - (x ² + 3x) exp(x) + 2 exp(3x)

A survey of 30-year-old males provided data on the number of auto accidents in the previous 5 years. The sample mean is 1.3 accidents per male. Test the hypothesis that the number of accidents follows a Poisson distribution at the 5% level of significance.

No. of accident No. of males
0 39
1 22
2 14
3 11
>=4 4

Required:
a. What's the Expected probability of finding males with 0 accidents?
b. What's the Expected probability of finding males with 4 or more accidents?

Answers

Answer:

0.2725

0.0431

Step-by-step explanation:

The distribution here is a poisson distribution :

λ = 1.3

The poisson distribution :

p(x) = [(e^-λ * λ^x)] ÷ x!

Expected probability of finding male with 0 accident ; x = 0

p(0) = [(e^-1.3 * 1.3^0)] ÷ 0!

p(0) = [0.2725317 * 1] ÷ 1

p(0) = 0.2725317

= 0.2725

2.)

P(x ≥ 4) = 1 - P(x < 4)

P(x < 4) = p(x = 0) + p(x. = 1) + p(x = 2) + p(x = 3)

p(x = 0) =  p(0) = [(e^-1.3 * 1.3^0)] ÷ 0! = 0.2725

p(x = 1) = p(1) = [(e^-1.3 * 1.3^1)] ÷ 1! = 0.35429

p(x = 2) = p(2) = [(e^-1.3 * 1.3^2)] ÷ 2! = 0.23029 p(x = 3) = p(3) = [(e^-1.3 * 1.3^3)] ÷ 0! = 0.09979

P(x < 4) = 0.2725 + 0.35429 + 0.23029 + 0.09979 = 0.95687

P(x ≥ 4) = 1 - 0.95687 = 0.0431

On the first day of travel, a driver was going at a speed of 40 mph. The next day, he increased the speed to 60 mph. If he drove 2 more hours on the first day and traveled 20 more miles, find the total distance traveled in the two days.

Answers

The Total mileage is "400" and the further solution can be defined as follows:

Let t become the time he spent commuting on the first day of his vacation.

It is then calculated as [tex]t + 2[/tex].

[tex]\to 40\times(t+2) = 60(t) + 20 \\\\\to 40t+80 = 60t + 20 \\\\\to 80-20 = 60t + 40t \\\\\to 60 = 20t \\\\\to t=\frac{60}{20} \\\\\to t=\frac{6}{2} \\\\\to t= 3\\\\[/tex]

It traveled [tex]40\times (3 + 2) + 20 = 40\times 5 + 20 = 200+20=220[/tex] miles on its first day of operation.

The car traveled [tex]180\ miles[/tex] on the second day, which was [tex]60 \ miles \times 3[/tex].

So,

Total mileage= first day traveled + second day traveled [tex]= 220+ 180= 400 \miles[/tex]

Learn more:

Total distance traveled: brainly.com/question/20670144

A computer system uses passwords that are exactly six characters and each character is one of the 26 letters (a–z) or 10 integers (0–9). Suppose that 10,000 users of the system have unique passwords. A hacker randomly selects (with replace- ment) one billion passwords from the potential set, and a match to a user’s password is called a hit. (a) What is the distribution of the number of hits? (b) What is the probability of no hits? (c) What are the mean and variance of the number of hits?

Answers

Answer:

The number of hits would follow a binomial distribution with [tex]n =10,\!000[/tex] and [tex]p \approx 4.59 \times 10^{-6}[/tex].

The probability of finding [tex]0[/tex] hits is approximately [tex]0.955[/tex] (or equivalently, approximately [tex]95.5\%[/tex].)

The mean of the number of hits is approximately [tex]0.0459[/tex]. The variance of the number of hits is approximately [tex]0.0459\![/tex] (not the same number as the mean.)

Step-by-step explanation:

There are [tex](26 + 10)^{6} \approx 2.18 \times 10^{9}[/tex] possible passwords in this set. (Approximately two billion possible passwords.)

Each one of the [tex]10^{9}[/tex] randomly-selected passwords would have an approximately [tex]\displaystyle \frac{10,\!000}{2.18 \times 10^{9}}[/tex] chance of matching one of the users' password.

Denote that probability as [tex]p[/tex]:

[tex]p := \displaystyle \frac{10,\!000}{2.18 \times 10^{9}} \approx 4.59 \times 10^{-6}[/tex].

For any one of the [tex]10^{9}[/tex] randomly-selected passwords, let [tex]1[/tex] denote a hit and [tex]0[/tex] denote no hits. Using that notation, whether a selected password hits would follow a bernoulli distribution with [tex]p \approx 4.59 \times 10^{-6}[/tex] as the likelihood of success.

Sum these [tex]0[/tex]'s and [tex]1[/tex]'s over the set of the [tex]10^{9}[/tex] randomly-selected passwords, and the result would represent the total number of hits.

Assume that these [tex]10^{9}[/tex] randomly-selected passwords are sampled independently with repetition. Whether each selected password hits would be independent from one another.

Hence, the total number of hits would follow a binomial distribution with [tex]n = 10^{9}[/tex] trials (a billion trials) and [tex]p \approx 4.59 \times 10^{-6}[/tex] as the chance of success on any given trial.

The probability of getting no hit would be:

[tex](1 - p)^{n} \approx 7 \times 10^{-1996} \approx 0[/tex].

(Since [tex](1 - p)[/tex] is between [tex]0[/tex] and [tex]1[/tex], the value of [tex](1 - p)^{n}[/tex] would approach [tex]0\![/tex] as the value of [tex]n[/tex] approaches infinity.)

The mean of this binomial distribution would be:[tex]n\cdot p \approx (10^{9}) \times (4.59 \times 10^{-6}) \approx 0.0459[/tex].

The variance of this binomial distribution would be:

[tex]\begin{aligned}& n \cdot p \cdot (1 - p)\\ & \approx(10^{9}) \times (4.59 \times 10^{-6}) \times (1- 4.59 \times 10^{-6})\\ &\approx 4.59 \times 10^{-6}\end{aligned}[/tex].

Find the missing side lengths leave your answer as a racials simplest form

Answers

Answer:

m=[tex]7\sqrt3[/tex]

n=7

Step-by-step explanation:

Hi there!

We are given a right triangle (notice the 90°) angle, the measure of one of the acute angles as 60°, and the measure of the hypotenuse (the side OPPOSITE from the 90 degree angle) as 14

We need to find the lengths of m and n

Firstly, let's find the measure of the other acute angle

The acute angles in a right triangle are complementary, meaning they add up to 90 degrees

Let's make the measure of the unknown acute angle x

So x+60°=90°

Subtract 60 from both sides

x=30°

So the measure of the other acute angle is 30 degrees

This makes the right triangle a special kind of right triangle, a 30°-60°-90°  triangle

In a 30°-60°-90° triangle, if the length of the hypotenuse is a, then the length of the leg (the side that makes up the right angle) opposite from the 30 degree angle is [tex]\frac{a}{2}[/tex], and the leg opposite from the 60 degree angle is [tex]\frac{a\sqrt3}{2}[/tex]

In this case, a=14, n=[tex]\frac{a}{2}[/tex], and m=[tex]\frac{a\sqrt3}{2}[/tex]

Now substitute the value of a into the formulas to find n and m to find the lengths of those sides

So that means that n=[tex]\frac{14}{2}[/tex], which is equal to 7

And m=[tex]\frac{14\sqrt3}{2}[/tex], which simplified, is equal to [tex]7\sqrt3[/tex]

Hope this helps!

are ratios 2:3 and 8:12 equalvelent to eachother

Answers

Answer:

2:3 is equal to 8:12

Step-by-step explanation:

2:3

To get the first number to 8

8/2 = 4

Multiply by all terms 4

2*3 : 3*4

8:12

2:3 is equal to 8:12

8:12 = 8/12

= 2/3

= 2:3

Therefore 2:3 and 8:12 are equalent to each other.

Answered by Gauthmath must click thanks and mark brainliest

I need help guys thanks so much

Answers

Answer: C

Step-by-step explanation:

What is the equation of a line that passes through the point (1,8) and is perpendicular to the line whose equation is y=x/2+3?

Answers

Answer:

m=1/2

y-8=1/2(x-1)

y-8=1/2x-1/2

multiply through by 2

2y-16=x-1

2y-16+1-x=0

2y-15-x=0

2y-x-15=0

find the mid-point of the line segment joining the points (10, 13) and (-7, 7)? ​

Answers

Answer:

(3/2,10)

Step-by-step explanation:

Mid point is ((10-7)/2,(13+7)/2)=(1.5,10)

SOMEONE HELP ME PLEASE

Answers

Answer:

9/25

Step-by-step explanation:

3 novels , 1 bio , 1 poetry = 5 books

P( novel) = novels / books

               = 3/5

Book is returned

3 novels , 1 bio , 1 poetry = 5 books

P( novel) = novels / books

               = 3/5

P(novel, return, novel) = 3/5 * 3/5 = 9/25

Which expression is equivalent to
128xy
5 ? Assume x > 0 and y> 0.
2xy5
Moto
8
yax
8
BV
y
8.VY
X

Answers

Answer:

[tex]\sqrt{128x^8y^3} = 8 x^4 y \sqrt{2y}[/tex]

Step-by-step explanation:

Given

[tex]\sqrt{128x^8y^3}[/tex] --- the complete expression

Required

The equivalent expression

We have:

[tex]\sqrt{128x^8y^3}[/tex]

Expand

[tex]\sqrt{128x^8y^3} = \sqrt{128* x^8 * y^3}[/tex]

Further expand

[tex]\sqrt{128x^8y^3} = \sqrt{64 * 2* x^8 * y^2 * y}[/tex]

Rewrite as:

[tex]\sqrt{128x^8y^3} = \sqrt{64 * x^8 * y^2* 2 * y}[/tex]

Split

[tex]\sqrt{128x^8y^3} = \sqrt{64 * x^8 * y^2} * \sqrt{2 * y}[/tex]

Express as:

[tex]\sqrt{128x^8y^3} = (64 * x^8 * y^2)^\frac{1}{2} * \sqrt{2y}[/tex]

Remove bracket

[tex]\sqrt{128x^8y^3} = (64)^\frac{1}{2} * (x^8)^\frac{1}{2} * (y^2)^\frac{1}{2} * \sqrt{2y}[/tex]

[tex]\sqrt{128x^8y^3} = 8 * x^\frac{8}{2} * y^\frac{2}{2} * \sqrt{2y}[/tex]

[tex]\sqrt{128x^8y^3} = 8 * x^4 * y * \sqrt{2y}[/tex]

[tex]\sqrt{128x^8y^3} = 8 x^4 y \sqrt{2y}[/tex]

Find the Z scores for which 5% of the distributions area lies between negative Z & Z

Answers

Answer:

0.475: Z = -0.062706778

0.525: Z = 0.062706778

Step-by-step explanation:

Which of the following behaviors would best describe someone who is listening and paying attention? a) Leaning toward the speaker O b) Interrupting the speaker to share their opinion c) Avoiding eye contact d) Asking questions to make sure they understand what's being said

Answers

The answer is A and D

good luck

I NEED HELP THANK YOU!!

Answers

Answer:

rt3/2

Step-by-step explanation:

first off cosine is the x coordinate

now if you do't want to use a calculator, you can use use the unit circle.

360 - 330 = 30 (360 degrees is a whole circle)

a 30 60 90 triangle is made, then use the law for 30 60 90 triangles:

if the shortest leg is x, the other leg is x*rt3 and the hypotenuse is 2x.

Answer:

D

Step-by-step explanation:

cos 330 = cos (360-330)

= cos 30

= √3 /2

find the equation of Straight line which passes through the point A(-5,10) makes equal intercept on both axes.

Answers

Answer:

y = -x + 5

Step-by-step explanation:

The point is in quadrant 2, so the line must pass through points that look like (a, 0) and (0, a) where a is a positive number.  The slope of such a line is -1.

If (x, y) is a point on the line, then the slope between points (x, y) and (-5, 10) is 1, and you can write

[tex]\frac{y-10}{x-(-5)}=-1\\y-10 = -1(x+5)\\y-10=-x-5\\y=-x+5[/tex]

Which points lie on the graph of f(x) = loggx?
Check all that apply.

Answers

Step-by-step explanation:

f(x)=log(x)

     =d(log(x)/dx)

=>y=1/x

What is the equation of a circle with center (1, -4) and radius 2?

Answers

Answer:

(x-1)^2 + (y+4)^2 = 4

Step-by-step explanation:

The equation for a circle is given by

(x-h)^2 + (y-k)^2 = r^2 where (h,k) is the center and r is the radius

(x-1)^2 + (y- -4)^2 = 2^2

(x-1)^2 + (y+4)^2 = 4

Other Questions
plz help me!!!!!!!!!!!!!!! my son needs help can you help us What is the value of x in the figure shown below? Please help me solve this ! Ok, I actually need a lot of help- 30 points to whoever can Abdul works as a regulator at the Bureau of Consumer Protection. His agency makes sure that consumers are treated fairly. What task might be part of Abdul's job at his agency?Question 6 options:drawing up ideas for the new city parkdrafting a proposal for the state government budgetrecording information about a fraudulent businessmeeting with heads of state to discuss trade please answer quickly!! my Christmas present to you PLEASE HELP whoever answers all of them and first im giving brainliest. What would the seasons on Earth be like if its axis was tilted like Uranus, perpendicular to its orbit? What would the climate at your location be like compared to how it's now?PLZ Help!! I will give you a brainliest! Predict how Alexander the Great would respond to the 21st Century issue if he was alive today. Explain why the person would be likely to hold that view. Last week, Brenna's Ice Creamery sold 34 sundaes with nuts and 16 sundaes without nuts. What is the ratio of the number of sundaes with nuts to the number of sundaes without nuts?Write your answer as a fraction. Use a slash ( / ) to separate the numerator and denominator. Where the World Summit Sustainable Development was formed aimed at the continued realization of sustainable consumptionA. Tokyo B. ManilaC. SpainD. Johannesburg What is the cause of Romeos despair? [tex] \tiny\textsf{ }[/tex]~ o s o : uosnb 10 is 20% of (blank) _______________ is a type of art reflected the belief that the dead could continue to enjoy their favorite activities.a.Hellenistic artc.Geometric artb.Funerary artd.Classical artPlease select the best answer from the choices providedABCD The magnitude, M, of an earthquake is represented by the equation M=23logEE0 where E is the amount of energy released by the earthquake in joules and E0=104. 4 is the assigned minimal measure released by an earthquake. In scientific notation rounded to the nearest tenth, what is the amount of energy released by an earthquake with a magnitude of 5. 5?. The Emancipation Proclamation freed the slaves a. Throughout the entire United States (Union and Confederate territories).b. In the unoccupied portion of the Confederacy.c. In the western territories.d. In Confederate territory under Union control. HELP i need this question fast pls anyone i will mark brainliest Why does nasa publish a different star finder every month?.