==========================================
Explanation:
The steps you have so far are correct. You just need to multiply both sides by -3
Doing so will clear out the fractions and you'll be left with 19 = x, which is the same as x = 19
Let's check that answer:
[tex]y = -\frac{1}{3}x + 7\\\\y = -\frac{1}{3}*19 + 7\\\\y = \frac{-19}{3} + 7*\frac{3}{3}\\\\y = \frac{-19}{3} + \frac{21}{3}\\\\y = \frac{-19+21}{3}\\\\y = \frac{2}{3}\\\\[/tex]
So the answer is confirmed.
A study examines the relationship between being a registered nurse (yes/no) and passing a cultural competency exam (yes/no) among a group of 987 randomly selected employees at your hospital. What test would be appropriate to determine if there is an association
Answer:
The appropriate test to determine if there is an association between being a registered nurse and passing a cultural competency exam among a group of 987 randomly selected hospital employees is a:
Chi-square Test.
Step-by-step explanation:
The Chi-Square Test uses either a diagram (like a scatter plot) or a hypothesis test to show the existence of an association between two variables or statistically demonstrate that a relationship exists between the two variables. Using the computed t-score, the significant association between two categorical variables can be measured and established.
What is a placement form from the school mean
Answer:
Placements are basically extended internships or work experience assignments
Step-by-step explanation:
A contractor is purchasing some stone tiles for a new patio. Each cost $3 and he wants to spend less than $1200. The size of each tile is 1 square foot. Write an inequality that represents the number of tiles he can purchase with a $1200 limit, and then figure out how large the stone patio can be.
Answer:
4 0 0 s q. ft.Step-by-step explanation:
3x≤1200; 400 sq. ft.find the volume of each figure. Round to the nearest tenth if necessary.
Volume of Triangular Prism = 1/2(bhl)
Base = 8
Height = 6
Length = 11
Volume = 1/2(8×6×11)
= 264yd³
Must click thanks and mark brainliest
Interpret the coefficient of determination. Choose the correct answer below. A. The coefficient of determination measures the percent of variation not explained by the multiple regression model. B. The coefficient of determination measures the percent of variation explained by the multiple regression model. C. The coefficient of determination measures the expected error of the predicted sales given a specific total square footage and number of shopping centers. D. The coefficient of determination measures the average predicted sales for the multiple regression model.
Answer:
B.The coefficient of determination measures the percent of variation explained by the multiple regression model.
Step-by-step explanation:
The answer to this question is option b because the coefficient of variation R² gives a measure of the variability that is ending y values or the dependent variables which can be explained in a multiple linear regression.
In simpler words, it is the percentage of proportion of variation in the dependent variable that can be predicted using the explanatory variables.
find the exact value of tan(165°) using a difference of two angles
Answer: [tex]-2+\sqrt{3}[/tex]
=========================================================
Work Shown:
Apply the following trig identity
[tex]\tan(A - B) = \frac{\tan(A)-\tan(B)}{1+\tan(A)*\tan(B)}\\\\\tan(225 - 60) = \frac{\tan(225)-\tan(60)}{1+\tan(225)*\tan(60)}\\\\\tan(165) = \frac{1-\sqrt{3}}{1+1*\sqrt{3}}\\\\\tan(165) = \frac{1-\sqrt{3}}{1+\sqrt{3}}\\\\[/tex]
Now let's rationalize the denominator
[tex]\tan(165) = \frac{1-\sqrt{3}}{1+\sqrt{3}}\\\\\tan(165) = \frac{(1-\sqrt{3})(1-\sqrt{3})}{(1+\sqrt{3})(1-\sqrt{3})}\\\\\tan(165) = \frac{(1-\sqrt{3})^2}{(1)^2-(\sqrt{3})^2}\\\\\tan(165) = \frac{(1)^2-2*1*\sqrt{3}+(\sqrt{3})^2}{(1)^2-(\sqrt{3})^2}\\\\\tan(165) = \frac{1-2\sqrt{3}+3}{1-3}\\\\\tan(165) = \frac{4-2\sqrt{3}}{-2}\\\\\tan(165) = -2+\sqrt{3}\\\\[/tex]
----------------------
As confirmation, you can use the idea that if x = y, then x-y = 0. We'll have x = tan(165) and y = -2+sqrt(3). When computing x-y, your calculator should get fairly close to 0, if not get 0 itself.
Or you can note how
[tex]\tan(165) \approx -0.267949\\\\-2+\sqrt{3} \approx -0.267949[/tex]
which helps us see that they are the same thing.
Further confirmation comes from WolframAlpha (see attached image). They decided to write the answer as [tex]\sqrt{3}-2[/tex] but it's the same as above.
Solve the following system of equations and show all your work y=2x^2 y=3x-1
Answer:
( 1/2 ; 1/2 ) and ( 1 ; 2 )
Step-by-step explanation:
y = 2x².............1
y = 3x-1............2
2x²=3x-1
2x²-3x+1 = 0
(2x-1)(x-1) = 0
x = 1/2 or x = 1
y = 1/2 or y = 2
Find m<1.
33°
47°
42°
28°
Answer:
<1 = 33
Step-by-step explanation:
The sum of the angle of a triangle is 180
31+116+x = 180
x+147=180
x = 180-147
x = 33
For this problem I thought the answer would be 1.3 for part C since it said to find the mean. However, I am wrong. Can someone help me with the problem please? Thank you for your help!
Answer:
Step-by-step explanation:
the mean is
{(12x1)+(13x1)+(14x2)+(15x2)+(17)+(18)+(19x2)+(20)+(21x2)+(22)+(24)}/11
mean=264/11
mean=24
Instructions: Find the measure of the indicated angle to the nearest degree.
Answer:
? = 13.6
Step-by-step explanation:
Let the unknown angle be y
so
tan y= p/b
tan y =8/33
y = tan‐¹(8/33)
y = 13.62699486
y = 13.6
What is the x-intercept of the graph of the function f(x) = x2 − 16x + 64?
(−8, 0)
(0, 8)
(8, 0)
(0, −8)
Answer:
(8,0)
Step-by-step explanation:
f(x) = x^2 − 16x + 64
The x intercepts ( or zeros) are found by setting y=0
0 = x^2 − 16x + 64
Factor
0 = (x-8)(x-8)
Using the zero product property
x-8 =0 x-8 =0
x=8 x=8
(8,0)
Answer:
8,0
edge 20201
If a house is worth $125,000 and depreciates by 7.5% per year, how much is it worth in two years
Answer:
Solution given;
principal [P]=$125,000
depreciated rate[R]=7.5%
time[t]=2 years
worth price of house [A]=???
we have
Worth price[A]=[tex]\large \bold P(1-\frac{R}{100})^{t}[/tex]
=[tex]125,000(1-\frac{7.5}{100})^{2}[/tex]
=125,000*0.925²
=125,000*0.855625
=106953.125
its worth price is $106953.125Let f(x)=5-4x. Find f(3)
Answer:
-7
Step-by-step explanation:
f(x) = 5 - 4x
f(3) = 5 - 4(3) (since x = 3)
f(3) = 5 - 12
f(3) = -7
Your credit card has a balance of $3300 and an annual interest rate of 14%. You decided to pay off the balance over two years. If there are no further purchases charged to the card, you must pay $158.40 each month, and you will pay a total interest of $501.60. Assume you decided to pay off the balance over one year rather than two. How much more must you pay each month and how much less will you pay in total interest?
9514 1404 393
Answer:
$137.90 more each month$246.00 less total interestStep-by-step explanation:
The amortization formula is ...
A = P(r/12)/(1 -(1 +r/12)^(-12t))
for the monthly payment on principal P at annual rate r for t years. Here, we have P=3300, r = 0.14, and t=1, so the monthly payment is ...
A = $3300(0.14/12)/(1 -(1 +0.14/12)^-12) ≈ $296.30
The payment of $296.30 is ...
$295.30 -158.40 = $137.90 . . . more each month
The total amount paid is 12×$296.30 = $3555.60, so 255.60 in interest. This amount is ...
$501.60 -255.60 = $246.00 . . . less total interest
Determine the quadrant in which the terminal side of the given angle lies.
115°
Answer:
Quadrant 2
Step-by-step explanation:
Given
[tex]\theta = 115^o[/tex]
Required
The quadrant
We have:
[tex]0^o < \theta < 90^o[/tex] --- quadrant 1
[tex]90^o < \theta < 180^o[/tex] --- quadrant 2
[tex]180^o < \theta < 270^o[/tex] --- quadrant 3
[tex]270^o < \theta < 360^o[/tex] --- quadrant 4
So, by comparison; we have:
[tex]90^o < \theta < 180^o[/tex]
Substitute 115 for [tex]\theta[/tex]
[tex]90^o < 115 < 180^o[/tex]
The above is true for quadrant 2
6. The perimeter of a square room is 48 m, how much square metre carpet required it cover it ?
Answer:
144
Step-by-step explanation:
Answer:
first you have to now each side length ,since it is square so all sides are equal so 48/4=12 i.e perimeter =4 so our qoustion is area so the area of square is side square
Step-by-step explanation:
so side =12 , 12square is 144 that set.
धरोहर को वाक्य बनाऊ
Answer:
Please tell in english
Step-by-step explanation:
find the value of the trigonometric ratio. make sure to simplify the fraction if needed
Answer:
Sin A = o/h
= 9/41
Step-by-step explanation:
since Sin is equal to opposite over hypotenuse, from the question, the opposite angle of A is 9 and hypotenuse angle of A is 41. Thus the answer for Sin A= 9/41
When f(x) =-3 what is x?
Answer:
D or -1
Step-by-step explanation:
It says that f(x) is equal to -3.
f(x) is the same as y-values, and x is the same as the x-values on a coordinate grid because x is the independent variable, meaning y is the dependent variable, where f(x) depends on the value of x to find y.
So if y is -3, it can be found on the graph on the 4th line, so x = -1 when y = -3
A baseball team plays in a stadium that holds 58000 spectators. With the ticket price at $12 the average attendance has been 25000. When the price dropped to $9, the average attendance rose to 29000. Assume that attendance is linearly related to ticket price.
Required:
a. Find the demand function p(x), where x is the number of the spectators.
b. How should ticket prices be set to maximize revenue?
Answer:
We need to assume that the relationship is linear.
a) Remember that a linear relation is written as:
y = a*x + b
then we will have:
p(x) = a*x + b
where a is the slope and b is the y-intercept.
If we know that the line passes through the points (a, b) and (c, d), then the slope can be written as:
y = (d - b)/(c - a)
In this case, we know that:
if the ticket has a price of $12, the average attendance is 25,000
Then we can define this with the point:
(25,000 , $12)
We also know that when the price is $9, the attendance is 29,000
This can be represented with the point:
(29,000, $9)
Then we can find the slope as:
a = ($9 - $12)/(29,000 - 25,000) = -$3/4,000 = -$0.00075
Then the equation is something like:
y = (-$0.00075)*x + b
to find the value of b we can use one of the known points.
For example, the point (25,000 , $12) means that when x = 25,000, the price is $12
then:
$12 = (-$0.00075)*25,000 + b
$12 = -$18.75 + b
$12 + $18.75 = b
$30.75 = b
Then the equation is:
p(x) = (-$0.00075)*x + $30.75
b) We want to find the ticket price such that it maximizes the revenue.
The revenue will be equal to the price per ticket, p(x) times the total attendance, x.
Then the revenue can be written as:
r(x) = x*p(x) = x*( (-$0.00075)*x + $30.75 )
r(x) = (-$0.00075)*x^2 + $30.75*x
So we want to find the maximum revenue.
Notice that this is a quadratic equation with a negative leading coefficient, thus the maximum will be at the vertex.
Remember that for an equation like:
y = a*x^2 + bx + c
the x-value of the vertex is:
x = -b/2a
Then in our case, the x-value will be:
x = -$30.75/(2*(-$0.00075)) = 20,500
Then the revenue is maximized for x = 20,500
And the price for this x-vale is given by:
p( 20,500) = (-$0.00075)*20,500 + $30.75 = $15.375
which should be rounded to $15.38
A window is to be built in the shape of a rectangle surmounted by an isosceles triangle. The area of the window must be 6 square meters. Use Lagrange Multipliers to find the width and height of the rectangle for which the perimeter of the window will be as small as possible
Answer:
x = 2.536 m
y = 2 m
Step-by-step explanation:
Considering the three sides of the rectangle and the isosceles triangle
when resolving the width and height of the rectangle to achieve the smallest possible perimeter.
step 1 :
Area of window = xy + 1/2 xz , perimeter = x + 2y + 2c
c = [tex]\sqrt{z^2 + 1/4 x^2 }[/tex]
we are tasked with minimizing the perimeter ( p ) subject to A = 6
attached below is the detailed solution of the given problem
A textbook store sold a combined total of 473 chemistry and sociology textbooks in a week. The number of sociology textbooks sold was 59 less than the number of chemistry textbooks sold. How many textbooks of each type were sold?
Answer:
I. C = 266 textbooks.
II. S = 207 textbooks.
Step-by-step explanation:
Let the chemistry textbook be C.
Let the sociology textbook be S.
Translating the word problem into an algebraic expression, we have;
C + S = 473 ..... equation 1
S = C - 59 ..... equation 2
Substituting eqn 2 into eqn 1, we have;
C + C - 59 = 473
2C - 59 = 473
2C = 473 + 59
2C = 532
C = 532/2
C = 266 textbooks.
Next, we would determine the value of S;
S = C - 59
S = 266 - 59
S = 207 textbooks.
Check:
C + S = 473
266 + 207 = 473
473 = 473
need help asap :) ty
Answer:
3:7
Step-by-step explanation:
i hope this helps
5
13
The probabilities that three men win their respective races are 1/3,3/5and 3/4.what is theprobability that
a) all of them win their races)
b) only one of them win his race?
Answer:
a
Step-by-step explanation:
1/3 x 3/5 x 3/4 =7/12 so therefore that's what the answer isn't
A well-known brokerage firm executive claimed that 60% of investors are currently confident of meeting their investment goals. An XYZ Investor Optimism Survey, conducted over a two week period, found that in a sample of 100 people, 69% of them said they are confident of meeting their goals. Test the claim that the proportion of people who are confident is larger than 60% at the 0.01 significance level.
The null and alternative hypothesis would be:________
a. H0:μ=0.6H0:μ=0.6
H1:μ≠0.6H1:μ≠0.6
b. H0:μ=0.6H0:μ=0.6
H1:μ<0.6H1:μ<0.6
c. H0:μ=0.6H0:μ=0.6
H1:μ>0.6H1:μ>0.6
d. H0:p=0.6H0:p=0.6
H1:p≠0.6H1:p≠0.6
e. H0:p=0.6H0:p=0.6
H1:p>0.6H1:p>0.6
f. H0:p=0.6H0:p=0.6
H1:p<0.6H1:p<0.6
The test is:________
a. two-tailed
b. left-tailed
c. right-tailed
The test statistic is:_______ (to 3 decimals)
The p-value is:_______ (to 4 decimals)
Based on this we:________
a. Fail to reject the null hypothesis
b. Reject the null hypothesis
We are testing a hypothesis. So, first we identify the null and the alternative hypothesis, then we find the test statistic, and with the test statistic, the p-value is found.
Null and alternative hypothesis:
Claim the the proportion is of 60%, thus, the null hypothesis is:
[tex]H_0: p = 0.6[/tex]
Test if the proportion is greater than 60%, thus, the alternative hypothesis is:
[tex]H_1: p > 0.6[/tex]
And the answer to the first question is given by option c.
Classification:
We are testing if the proportion is greater than a value, so it is a right-tailed test.
Test statistic:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.
0.6 is tested at the null hypothesis:
This means that [tex]\mu = 0.6, \sigma = \sqrt{0.4*0.6}[/tex]
Survey, conducted over a two week period, found that in a sample of 100 people, 69% of them said they are confident of meeting their goals.
This means that [tex]n = 100, X = 0.69[/tex]
Value of the test statistic:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]z = \frac{0.69 - 0.6}{\frac{\sqrt{0.4*0.6}}{\sqrt{100}}}[/tex]
[tex]z = 1.837[/tex]
The test statistic is z = 1.837.
p-value:
The p-value of the test is the probability of finding a sample proportion above 0.69, which is 1 subtracted by the p-value of z = 1.837.
Looking at the z-table, z = 1.837 has a p-value of 0.9669.
1 - 0.9669 = 0.0331
The p-value is 0.0331.
Decision:
The p-value of the test is 0.0331 > 0.01, and thus:
a. Fail to reject the null hypothesis
For another example of a problem of a test of hypothesis, you can take a look at:
https://brainly.com/question/24166849
Can someone please help me with this
9514 1404 393
Answer:
21. D
22. C
Step-by-step explanation:
21. The expansion of the given expression is ...
[tex]\displaystyle -\frac{1}{2}\left(-\frac{3}{2}x+6x+1\right)-3x=\frac{3}{4}x-3x-\frac{1}{2}-3x\\\\=\left(\frac{3}{4}-3-3\right)x-\frac{1}{2}=\boxed{-5\frac{1}{4}x-\frac{1}{2}}[/tex]
__
22. The least likely team to make the championship game is the one with the lowest probability.
3/8 < 1/2 < 2/3 < 4/5
The Bulldogs are least likely to play in the championship game.
This graph shows a portion of an odd function.
Use the graph to complete the table of values.
X
f(x)
-2.
-3
-4
-6
DONE
9514 1404 393
Answer:
-2-1-2-3Step-by-step explanation:
An odd function is symmetrical about the origin:
f(-x) = -f(x)
So, ...
f(-2) = -f(2) = -2
f(-3) = -f(3) = -1
f(-4) = -f(4) = -2
f(-6) = -f(6) = -3
Answer:
-2
-1
-2
-3
I did it on edge2020 and got it right
Help ASAP please !!
Option 4
Answered by Gauthmath must click thanks and mark brainliest
The lin 2x - 3y = 4 does not passes through the point :
A) (1/2,-1)
B) (2,0)
C) (1, -2/3)
D) (2,-1)
I would really appreciate it if some helps me with this question!
Answer:
The choose D (2, –1)
2x-3y=4 —> 3y=2X-4 —> y= 2/3x – 4/3
y=mx+b —> So ; m= 2/3 , b= - 4/3
y-intercept :(0, -4/3)
0=2/3x –4/3 —> 2/3x = 4/3 —> X=2
x-intercept ; (2,0)
By drawing a straight line from point 2 on the x-axis and point -4/3 on the y-axis, the points that are on the axis have been extracted, but the point (2,-1) is not on the axis . :)
I hope it helped you ^_^
K.Brew sells a wide variety of outdoor equipment and clothing. The company sells both through mail order and via the internet. Random samples of sales receipts were studied for mail-order sales and internet sales, with the total purchase being recorded for each sale. A random sample of 18 sales receipts for mail-order sales results in a mean sale amount of $81.90 with a standard deviation of $22.25. A random sample of 8 sales receipts for internet sales results in a mean sale amount of $88.30 with a standard deviation of $23.25. Using this data, find the 90% confidence interval for the true mean difference between the mean amount of mail-order purchases and the mean amount of internet purchases. Assume that the population variances are not equal and that the two populations are normally distributed. Construct the 98% confidence interval.
Answer:
kdjdeoksndoddmsnsksndjdjd