Answer:
m=[tex]7\sqrt3[/tex]
n=7
Step-by-step explanation:
Hi there!
We are given a right triangle (notice the 90°) angle, the measure of one of the acute angles as 60°, and the measure of the hypotenuse (the side OPPOSITE from the 90 degree angle) as 14
We need to find the lengths of m and n
Firstly, let's find the measure of the other acute angle
The acute angles in a right triangle are complementary, meaning they add up to 90 degrees
Let's make the measure of the unknown acute angle x
So x+60°=90°
Subtract 60 from both sides
x=30°
So the measure of the other acute angle is 30 degrees
This makes the right triangle a special kind of right triangle, a 30°-60°-90° triangle
In a 30°-60°-90° triangle, if the length of the hypotenuse is a, then the length of the leg (the side that makes up the right angle) opposite from the 30 degree angle is [tex]\frac{a}{2}[/tex], and the leg opposite from the 60 degree angle is [tex]\frac{a\sqrt3}{2}[/tex]
In this case, a=14, n=[tex]\frac{a}{2}[/tex], and m=[tex]\frac{a\sqrt3}{2}[/tex]
Now substitute the value of a into the formulas to find n and m to find the lengths of those sides
So that means that n=[tex]\frac{14}{2}[/tex], which is equal to 7
And m=[tex]\frac{14\sqrt3}{2}[/tex], which simplified, is equal to [tex]7\sqrt3[/tex]
Hope this helps!
Joel and Matt must together save at least $50.00 to buy a special present for their mother.
Joel saves twice as much as Matt. Which inequality best represents the situation if x
represents the amount of money that Matt saves?
Answer:
Option (2)
Step-by-step explanation:
Let the savings of Joel = $y
And the savings of Matt = $x
They jointly save at least $50 to buy a special present.
Therefore, equation for this condition will be,
x + y ≥ 50 --------(1)
Joel saves twice as much as Matt.
Equation for this condition will be,
y = 2x ------ (2)
By substituting the value of 'y' in the equation,
x + 2x ≥ 50
Therefore, Option (2) will be the answer.
What is the common ratio for this geometric sequence?
27, 9, 3, 1, ...
Answer:
1/3
Step-by-step explanation:
common ratio is
9÷27=1/3
3÷9=1/3
1÷3=1/3
therefore common ratio is 1/3
Answer: 1/3
Step-by-step explanation:
Let us confirm that this is a geometric sequence. 9/27 = 1/3 and 3/9 = 1/3. Thus, the common ratio is 1/3.
Which system of inequalities is shown in the graph?
36 > (x + 3)2 + (y – 2)2 and 16 > (x – 4)2 + y2
36 > (x – 2)2 + (y + 3)2 and 16 > (x – 4)2 + y2
36 < (x + 3)2 + (y – 2)2 and 16 > (x – 4)2 + y2
36 < (x – 2)2 + (y + 3)2 and 16 > (x – 4)2 + y2
Answer:
(x-2)^2 +(y+3)^2 >36 and (x-4)^2 +(y)^2 < 16
Step-by-step explanation:
The equation of a circle is (x-h)^2+(y-k)^2 = r^2
We are outside the yellow circle The yellow circle has a radius of 6 and a center at (2, -3)
(x-2)^2 +(y--3)^2 > 6^2
(x-2)^2 +(y+3)^2 > 36
We are also inside the blue circle which has a radius of 4 and a center of (4,0)
(x-4)^2 +(y-0)^2 < 4^2
(x-4)^2 +(y)^2 < 16
Answer:
D.) 36 < (x – 2)2 + (y + 3)2 and 16 > (x – 4)2 + y2
Step-by-step explanation:
Edge 2022
You measure 49 turtles' weights, and find they have a mean weight of 80 ounces. Assume the population standard deviation is 6.1 ounces. Based on this, construct a 99% confidence interval for the true population mean turtle weight. Round your answers to 2 decimal places.
Answer:
The 99% confidence interval for the true population mean turtle weight is between 77.76 and 82.24 ounces.
Step-by-step explanation:
We have to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.99}{2} = 0.005[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a p-value of [tex]1 - 0.005 = 0.995[/tex], so Z = 2.575.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
[tex]M = 2.575\frac{6.1}{\sqrt{49}} = 2.24[/tex]
The lower end of the interval is the sample mean subtracted by M. So it is 80 - 2.24 = 77.76 ounces.
The upper end of the interval is the sample mean added to M. So it is 80 + 2.24 = 82.24 ounces.
The 99% confidence interval for the true population mean turtle weight is between 77.76 and 82.24 ounces.
A newspaper advertisement offers a $9,000 car for nothing down and for 36 easy monthly payments of $317.50 what is the simple interest rate?
Answer:
27%
Step-by-step explanation:
Let x = simple interest rate
$9000 / 36 = $250 per month
$250x = 317.5
Divide both sides by 250
250x/250 = 317.5/250
x = 1.27
Let's check
250 x 1.27 = 317.5
If you were to multiply by .27 then it would just go down
250 x .27 = 67.5
A control variable is:
A. Measured to show the effect of a change.
B. Kept the same to make an experiment a fair test.
C. Collected to draw conclusions.
D. Changed to test a hypothesis.
It’s in between a and b, they’re both technically true no?
Answer:
B: kept the same to make an experiment a faith test
If contribution margin is $70000, sales is $120000, and net income is $50000, then variable and fixed expenses are
Variable Fixed
a) $190000 $70000
b) $50000 $20000
c) $50000 $70000
d) $20000 $50000
Answer:
c) $50000 $70000
Step-by-step explanation:
!!!!!!!
#include
using namespace std;
int main()
{
int x,y=0;
x=1123;
while (x!=0){
y+=x%10;
x/=10;
}
cout<
}
Answer:
main aapki madad karna chahti hun per Mujhe Ae Jahan question Nahin Aata sorry I don't know
sorry dear friend
Step-by-step explanation:
ok I don't know
−12x+y=10 in slope-intercept form
Answer:
y=12x+10
Step-by-step explanation:
Slope-intercept form is y=mx+b
1. Add -12x to both sides of the equation
Find the local linear approximation L(x) of the function f(x) = 5−x^2 at x = 2.
Use this to estimate f(2.1).
Answer:
L(x)=-4x+9
L(2.1)=0.6
Step-by-step explanation:
It's asking us to find the tangent line to curve f(x) = 5−x^2 at x = 2.
Theb use this to estimate f(2.1).
To find slope of tangent line, we must differentiate and then plug in 2 for x.
f'(x)=0-2x by constant and power rule.
f'(x)=-2x
So the slope of the tangent line is -2(2)=-4.
A point on this tangent line shared by the curve is at x=2. We can find it's corresponding y-value using f(x)=5-x^2.
f(2)=5-(2)^2
f(2)=5-4
f(2)=1
So let's rephrase the question a little.
What's the equation for a line with slope -4 and goes through point (2,1).
Point-slope form y-y1=m(x-x1) where m is slope and (x1,y1) is a point on the line.
Plug in our information: y-1=-4(x-2).
Distribute: y-1=-4x+8
Add 1 on both sides: y=-4x+9
Let's call this equation L(x), an expression to approximate value for f near x=2.
L(x)=-4x+9
Now the appropriation at x=2.1:
L(2.1)=-4(2.1)+9
L(2.1)=-8.4+9
L(2.1)=0.6
If we did plug in 2.1 into given function we get 5-(2.1)^2=0.59 . This is pretty close to our approximation above.
A number is at least -43 help please
Answer:
the question is incomplete :-')
write your answer in simplest radical form.
9514 1404 393
Answer:
√3
Step-by-step explanation:
The ratio of the short sides to the hypotenuse in an isosceles right triangle is ...
1 : 1 : √2
This means ...
p·√2 = √6
p = (√6)/(√2) = √(6/2)
p = √3
Help please im new and i need help
9514 1404 393
Answer:
B) False
Step-by-step explanation:
Triangles are similar when their angles are the same measures. Because the angles sum to 180°, we only need to show that 2 angles of one triangle are equal to 2 angles of the other triangle.
All three of the angles of the first triangle are given: 20°, 40°, 120°.
One of the angles of the second triangle matches: 40°; but the other angle (80°) doesn't match either of 20° or 120°.
The angles aren't the same, so the triangles are not similar.
__
If we want to go to the trouble, we can figure the third angle of the second triangle. It is 180° -40° -80° = 60°.
Then the angles in the two triangles, listed smallest to largest, are ...
20°, 40°, 120°
40°, 60°, 80°
It is clear the angles of these triangles are not the same.
Find the missing side of the triangle
Answer:
x = 15
Step-by-step explanation:
Pytago: a^2 + b^2 = c^2
x = [tex]\sqrt{25^{2} -20^{2} }[/tex] = 15
To win at LOTTO in one state, one must correctly select numbers from a collection of numbers (1 through ). The order in which the selection is made does not matter. How many different selections are possible?
Answer: If order does not matter then we can use following formula to find different combinations of 6 numbers out of 46 numbers
Step-by-step explanation: Use following Combination formula
nCr = n! / r!(n-r)!
n=46
r=6
=46!/6!(46-6)!
=46!/[6!(40)!]
=(46*45*44*43*42*41*40!)/(6*5*4*3*2*1)(40!)
Cancel out 40!
=46*45*44*43*42*41/(6*5*4*3*2*1)
=6744109680/720
=9366819
Mike wants to buy a scooter worth R10000 but cannot afford so he opts for the hire purchase agreement which requires a 13% deposit and a 24 equal monthly installments at a rate of 15% per annum compounded monthly
A.How much will his deposit be?
B.calculate how much does he still need to pay after the deposit
C.calculate the monthly installment
Answer: I think the answer is A
Step-by-step explanation:
In remodeling a house an architect finds that by adding the same amount to each dimension of a 15ft by 19ft rectangular room, the area would be increased by 98 ft^2. How
much must be added to each dimension?
Let x be the amount that is added to each dimension. After writing an equation in standard form with a > 0, a= ? b= ? and c= ?
(Simplify your answers.)
Answer:
Step-by-step explanation:
new length=15+x
width=19+x
then area=(15+x)×(19+x)=285+15x+19x+x²=x²+34x+285 ft²
original area=15×19=285 ft²
then 285+98=x²+34x+285
or
x²+34x-98=0
x²+34x+17²=98+17²
(x+17)²=98+289=387
x+17=√387=3√43
x=3√43-17 ft
HELP!!
Consider the polynomial
Answer:
1. coefficient of 3rd term = 1
2. constant term= 0
The coefficient of the third term is 1 while the constant term is 0 for the given expression.
What is an expression?An expression is a combination of some mathematical symbol such that an arithmetic operator and variable such that all are constrained and create an equation.
For example 3x +5y
As per the given polynomial,
(1/2)a⁴ + 3a³ + a
Here a is a variable.
(1)
The third term is a and its coefficient is 1 as (1)a.
(2)
All terms have variable "a" thus none of the terms is constant so the constant term is 0.
Hence "For the following statement, the constant term has a coefficient of 0 and the third term has a coefficient of 1".
To learn more about expression,
https://brainly.com/question/14083225
#SPJ2
A motorboat travels 104 kilometers in 4 hours going upstream. It travels 200 kilometers going downstream in the same amount of time. What is the rate of the boat in still water and what is the rate of the current?
[tex] \Large \mathbb{SOLUTION:} [/tex]
[tex] \begin{array}{l} \text{Let }r\text{ be the rate of the boat in still water and} \\ c\text{ be the rate of the current.} \\ \\ \text{So } \\ \begin{aligned} \quad&\bullet\:\text{Rate Upstream}= r - c \\ &\bullet\:\text{Rate Downstream}= r - c\end{aligned} \\ \\ \text{We know that }\text{Rate} = \dfrac{\text{Distance}}{\text{Time}}. \end{array} [/tex]
[tex] \begin{array}{l} \bold{Equations:} \\ \\ \begin{aligned} &\quad\quad \quad r - c = \dfrac{104}{4} = 26\quad (1) \\ \\ & \quad \quad \quad r + c = \dfrac{200}{4} = 50\quad (2)\\ \\ & \text{Adding (1) and (2), we get} \\ \\ &\quad\quad 2r = 76 \implies \boxed{r = 38\ \text{kph}} \\ \\ &\text{Using (2), it follows that} \\ \\ & \quad \quad c = 50 - r \implies \boxed{c = 12\ \text{kph}} \end{aligned} \end{array} [/tex]
The number of basic trigonometric ratios is....
A.3
B.4
C.5
D.6
Answer:
There are three basic trigonometric ratios: sine , cosine , and tangent .
Step-by-step explanation:
The Barnes store manager prefers that customers use the Barnes preferred
customer credit card for most purchases. In which case, would the manager prefer
customers use their MCVS credit card?
A. When the purchase is less than $100.00
B. When the purchase is less than $150.00
C. When the purchase is greater than $300.00
D. When the purchase is greater than $350.00
Answer:
D. When the purchase is greater than $350.
Step-by-step explanation:
Stores prefer to use credit card for customer whose purchase are worth high. The Barnes store manager prefer that customers use credit card for most purchases. When customers buy more than worth of $350, the store manager will prefer to use credit card.
Answer:
B
Step-by-step explanation:
a/(b+ce^x) dx = ? Please solve this
Answer:
1/ab en (c/be^-x+c)
Step-by-step explanation:
Sure is a harsh question! Here's my Explanation
b+ce^x = t
ce^x an = dt
e^xan = dt/c
an = dt/ce^x = dt/c(t-b/c) = at/(t-b)
en = t-b/c
A/b+ce^x dx = a/t dt/t-b
a ∫1/t (t-b) dt = 1/a∫ (1/(t-b) - 1/t) dt
= 1/ab [∫1/(t-b) dt + ∫-1/t dt]
= 1/ab [en (t-b) - en(t)]
= 1/ab en ((t-b)/t)
t = b + ce^x
= 1/ab en (b+ce^x -b/b+ce^x)
=1/ab en (ce^x/b+ce^x)
= 1/ab en (c/be^-x+c)
Three friends go grocery shopping together, and each buys the same kind of
strawberries. Akio buys 2 pounds (lb) and pays $3,50. Gordon buys 3 pounds
and pays $5.25. Maria buys 4 pounds and pays $7.00,
Identify the graph and unit price that represent the strawberry costs.
Unit Price
A. $1.75
1lb
b. $3.00
1lb
the bottom two are the same but with more space between the lines and they go up to 24
c $3.00
1lb
d. $1.75
1lb
9514 1404 393
Answer:
A.
Step-by-step explanation:
If you can find the given points (pounds, dollars) = (2, 3.50), (3, 5.25), and (4, 7.00) on the graph, then it is an appropriate graph. If the graph label matches the value it shows for 1 pound, then that graph and label are the one you want.
Graph A meets these requirements. It shows the cost of 1 lb to be $1.75, as the label says.
please help me asapp
Answer:
C. 12, 8, 5
Step-by-step explanation:Side lengths of any triangle must conform to the triangle inequality theorem, which says that the sum of the lengths of any of the two sides of the triangle is greater than the length of the third side.
This means:
a + b > c
a + c > b
b + c > a
Let's check each of the options to see which set are possible lengths for a triangle:
A. 6, 5, 11
6 + 11 > 5 ===> 17 > 5
5 + 11 > 6 ===> 16 > 6
6 + 5 > 11 ===> 11 > 11 (INCORRECT. Does not confirm to tye theorem)
Therefore, this set cannot be possible side lengths for a triangle.
B. 8, 1, 2
8 + 1 > 2 ===> 9 > 2
1 + 2 > 8 ===> 3 > 8 (INCORRECT)
8 + 2 > 1 ===> 10 > 1
This set cannot be possible side lengths for a triangle.
C. 12, 8, 5
12 + 8 > 5 ===> 20 > 5
8 + 5 > 12 ===> 13 > 12
12 + 5 > 8 ===> 17 > 8
All are correct, therefore these are possible side lengths for a triangle.
find the equation for the parabola that has its vertex at the origin and has directrix at x =1/34
Answer:
Focus is at the origin, so (0,0)
directrix at x=1/34
the equation of the parabola is,
[tex]x = \frac{1}{68} - 17 {y}^{2} [/tex]
What is the length of AC?
a. 3ft
b. 4ft
c. 18ft
d. 12ft
plz hurry
d. 12ft
Answer:
Solution given:
∆ABC is similar to∆MBN
since their corresponding side are proportional.
so
AB/MB=AC/MN
[since AM=BM=4ft
AB=AM+BM=4+4=8ft]
8/4=AC/6
doing crisscrossed multiplication
2*6=AC
AC=12ft
Use the graph to complete the statement. O is the origin. r(180°,O) ο Ry−axis : (2,5)
A. ( 2, 5)
B. (2, -5)
C. (-2, -5)
D. (-2, 5)
9514 1404 393
Answer:
B. (2, -5)
Step-by-step explanation:
Reflection across the y-axis is the transformation ...
(x, y) ⇒ (-x, y)
Rotation 180° about the origin is the transformation ...
(x, y) ⇒ (-x, -y)
Applying the rotation after the reflection, we get ...
(x, y) ⇒ (x, -y)
(2, 5) ⇒ (2, -5)
_____
Additional comment
For these transformations, the order of application does not matter. Either way, the net result is a reflection across the x-axis.
Answer:
(2,-5)
Step-by-step explanation:
Find the area of the triangle with the given
Answer:
616.2442
area to the nearest whole number=616
Step-by-step explanation:
using formula 1/2absinx
where a =44,b=29 ,x=105
1/2x44x29xsin105
44x29=1276
1276÷2=638
638 x sin 105
the sin of 105 is 0.9659
if u are using a four figure table where u can't find 105 under sin of angle
u simply subtract 105 from 180=75
638 x 0.9659 =616.2442
approx.616
The height of a triangle is 4 yards greater than the base. The area of the triangle is 70 square yards. Find the length of the base and the height of the triangle.
9514 1404 393
Answer:
base: 10 yardsheight: 14 yardsStep-by-step explanation:
Let b represent the length of the base. Then (b+4) is the height and the area of the triangle is ...
A = 1/2bh
70 = 1/2(b)(b+4)
b² +4b -140 = 0 . . . . . multiply by 2, put in standard form
(b +14)(b -10) = 0 . . . . factor
b = 10 . . . . the positive solution
The base of the triangle is 10 yards; the height is 14 yards.
What is the approximate volume of the
pyramid if the base area is 625 square
feet and the height is 50 feet?
Answer:
10417 cubic units (to nearest unit)
Step-by-step explanation:
A formula for the volume of pyramids (and cones--"pointy" things) is one-third times the area of the base times the height.
[tex]V=\frac{1}{3}Bh[/tex] where B is the area of the base.
[tex]V=\frac{1}{3}(625)(50) \approx 10417[/tex] cubic units (rounded)