mol = 3.19 × 10^23/6.02^23
= 0.529 mol
mass = 0.529 × 52
= 27.508 g
g to decigram
= 27.508 × 10
= 275.08 decigram
Match each land resource to its use.
clay - used to make steel
iron ore - used to make batteries
salt - used to make pottery and tiles
aggregate - used in construction
graphite - used as a flavoring in food
i will give 10 points and brainliest!!!
Answer:
Explanation:
We are to match each land resource to what they are being used for.
Clay →→→ used to make pottery and tiles
iron ore →→→ used to make steel
Salt →→→ used as a flavoring in food
aggregate →→→ used in construction
graphite →→→ used to make batteries
Clay is a kind of soil particle that forms as a result of weathering processes. Examples include; pottery clays, glacial clays, and deep-sea clays e.t.c. The presence of one or more clay minerals, as well as variable quantities of organic and detrital components, characterizes all of them. Clay is usually sticky and moist when wet, but hard when dry. They are used in the making of tiles and potteries.
Iron ore: The iron ore deposits are found in the Earth's crust's sedimentary rocks. They're made up of iron and oxygen that mix during the chemical process in marine and freshwater. iron ores are used to produce almost every iron and steel product that we use today.
Aggregate: are utilized in construction activities. It is a material used to mix cement, gypsum, bitumen, or lime to produce concrete in the construction industry.
Graphite: Graphite is a mineral that occurs in both igneous and metamorphic rocks. It is generally generated on the earth's surface when carbon is exposed to high temperatures and pressures. It is mainly used in the production of batteries and electrodes,
What are fires classified by?
Answer:
A fire class is a system of categorising fire with regard to the type of material and fuel for combustion. Class letters are often assigned to the different types of fire, but these differ between territories. There are separate standards for the United States, Europe, and Australia
List the following substances in order of decreasing boiling point:
CO2, Ne, CH3OH, KF
The correct order of the substances in order of decreasing boiling point is,
KF , CH30OH , CO2 , Ne
What is boiling point?Boiling point, the temperature at which the force exerted by the surroundings upon a liquid exists equaled by the pressure exerted by the vapor of the liquid; under this situation, the addition of heat affects the transformation of the liquid into its vapor without increasing the temperature.
The main difference between the boiling point and the melting point stands that the melting point is determined as the temperature at which solid and liquid phases exist in equilibrium, whereas the boiling point stands as the temperature at which the vapor pressure of a liquid stands equal to the external pressure.
Hence, The correct order of the substances in order of decreasing boiling point is,
KF , CH30OH , CO2 , Ne
To learn more about boiling point refer to:
https://brainly.com/question/5753603
#SPJ2
explain hydrogen dioxide
Answer:
Two molecules of hydrogen combine with two molecules of oxygen to form hydrogen peroxide. Hence, its chemical formula is H2O2. It is the simplest peroxide (since it is a compound with an oxygen-oxygen single bond). Hydrogen peroxide has basic uses as an oxidizer, bleaching agent and antiseptic
Which of the following reasons correctly explains the color changes that take place when ethylenediamine (C2N2H8) is added to the solution of cobalt(II) chloride?
a. Addition of the liquid ethylenediamine dilutes the concentration of cobalt(II) chloride in the solution resulting in a color change.
b. The ethylenediamine is oxidized and the resulting solution is deeply colored.
c. The water ligands surrounding the cobalt metal center are being replaced by ethylenediamine and chloride ligands which results in a different crystal field splitting. Thus, the energy associated with electron transitions between the do-orbitals will differ for the two compounds showing a color change.
Answer:
The water ligands surrounding the cobalt metal center are being replaced by ethylenediamine and chloride ligands which results in a different crystal field splitting. Thus, the energy associated with electron transitions between the do-orbitals will differ for the two compounds showing a color change.
Explanation:
The five d-orbitals are usually degenerate. Upon approach of a ligand, the d-orbitals split into two sets of orbitals depending in the nature of the crystal field.
The magnitude of crystal field splitting is affected by the nature of the ligand. Ligands having filled p-π orbitals such as ethylenediamine lead to greater crystal field splitting.
The change in the colour that takes place when ethylenediamine is added to the solution of cobalt(II) chloride occurs due to a different crystal field splitting pattern. Thus, the energy associated with electron transitions between the d-orbitals now differ for the two compounds showing a color change.
A 10.53 mol sample of krypton gas is maintained in a 0.8006 L container at 299.8 K. What is the pressure in atm calculated using the
van der Waals' equation for Kr gas under these conditions? For Kr, a = 2.318 L'atm/mol and b = 3.978x10²L/mol.
Answer:
-401.06 atm
Explanation:
Applying,
P = (nRT/V-nb)-(an²/V²)............... Equation 1
Where P = Pressure, R = Universal gas constant, V = molar Volume, T = Temperature in Kelvin, a = gas constant a , b = gas constant b, n = numbers of mole
From the question,
Given: T = 299.8 K, V = 0.8006 L, a = 2.318 L.atm/mol, b = 3.978×10²L/mol
Constant: R = 0.0082 atm.dm³/K.mol
Substitute these values into equation 1
P = [(0.0082×299.8×10.53)/(0.8006-(10.53×397.8)]-[(10.53²×2.318/0.8006²)]
P = (25.89/-4188.0334)-(400.995)
P = -0.0618-400.995
P = -401.06 atm
Given the following reaction: 3CuCl2(aq) 2Na3PO4(aq) --> Cu3(PO4)2(s) 6NaCl(aq) MM (g/mol) 134.45 163.94 380.58 58.44 If 285 mL of 6.3 M CuCl2 is added to excess Na3PO4 solution, how much precipitate( in grams) is produced Note: Write answer to two decimal places.
Answer:
227.78g of the precipitate are produced
Explanation:
Based on the reaction, 3 moles of CuCl2 produce 1 mole of Cu3(PO4)2 (The precipitate).
To solve this question we need to find the moles of CuCl2 added. With these moles and the reactio we can find the moles of Cu3(PO4)2 and its mass as follows:
Moles CuCl2:
285mL = 0.285L * (6.3mol / L) = 1.7955 moles CuCl2
Moles Cu3(PO4)2:
1.7955 moles CuCl2 * (1mol Cu3(PO4)2 / 3mol CuCl2) = 0.5985 moles Cu3(PO4)2
Mass Cu3(PO4)2 -380.58g/mol-
0.5985 moles Cu3(PO4)2 * (380.58g/mol) =
227.78g of the precipitate are produced
Calculate the amount of water (in grams) that must be added to (a) 6.80 g of urea [(NH2)2CO] in the preparation of a 9.95 percent by mass solution: g (b) 29.3 g of MgBr2 in the preparation of a 1.70 percent mass solution: g
Explanation:
Amount of water required in each case:
(a)The mass% of the solution is:9.95
Mass of solute that is urea is 6.80 g
To determine the mass of solvent water use the formula:
[tex]mass percent=\frac{mass of solute}{mass of solution} x 100\\\\9.95=(6.80g/mass of solution )x100\\mass of solution =(6.80 /9.95)x100\\=68.3 g[/tex]
Hence the mass of solvent = mass of solution - the mass of solute
=68.3 g - 6.80g
=61.5 g
Hence, the answer is mass of solvent water required is 61.5 g.
(b) Given mass%=1.70
mass of solute MgBr2 = 29.3 g
The mass of solvent water required can be calculated as shown below:
[tex]mass percent=\frac{mass of solute}{mass of solution} x 100\\\\1.70=(29.3g/mass of solution )x100\\mass of solution =(29.3 g /1.70)x100\\=1720 g[/tex]
The mass of the solution is 1720 g.
Mass of solvent water = mass of solution - mass of solute
=1720 g - 29.3 g
=1690.7 g
Answer: The mass of water required is 1690.7 g.
2. Calculate the wavelength of the emitted photon from hydrogen for the transition from ni = 3 to nf = 2. What part of the visible spectrum is this wavelength? Visible wavelengths are: Red 700 - 620 nm, Yellow 620 - 560 nm, Green 560 - 500 nm, Blue 500 - 440 nm, and Violet 440 - 400 nm.
Answer:
The correct answer is "654.54 nm".
Explanation:
According to the question,
⇒ [tex]\frac{1}{\lambda}= Rh(\frac{1}{n1^2} -\frac{1}{n2^2} )[/tex]
By substituting the values, we get
[tex]=1.1\times 10^7(\frac{1}{4} -\frac{1}{9} )[/tex]
[tex]=1.1\times 10^7(\frac{9-4}{36} )[/tex]
[tex]=1.1\times 10^7(\frac{5}{36} )[/tex]
[tex]=654.54\ nm[/tex]
Thus the above is the right solution.
The radioactivity due to carbon-14 measured in a piece of a wood from an ancient site was found to produce 20 counts per minute from a given sample, whereas the same amount of carbon from a piece of living wood produced 160 counts per minute. The half-life of carbon-14, a beta emitter, is 5730 y. The age of the artifact is closest to
Answer:
The answer is "17200 years".
Explanation:
Given:
[tex]A = 20 \ \frac{counts}{minute}\\\\A_{o} = 160\ \frac{counts}{minute}[/tex]
Let the half-life of carbon-14, is beta emitter, is [tex]T = 5730\ years[/tex]
Constant decay [tex]\ w = \frac{0.693}{ T}[/tex]
[tex]= 1.209 \times 10^{-4} \ \frac{1}{year}\\[/tex]
The artifact age [tex]t= ?[/tex]
[tex]A = A_{o} e^{-wt} \\\\e^{-wt} = \frac{A}{A_{o}}\\\\-wt = \ln \frac{A}{A_{o}}\\\\= -2.079\\\\t = 1.7199 \times 10^{4} \ years\\\\\sim \ 17200\ years\\[/tex]
Which of the following is used in EBRT?
O Silver tube
O Gold tube
O Copper tube
O Iron tube
Copper tube is used in EBRT.
What is meant by EBRT?External Beam Radiation. Therapy (EBRT) is a type of radiation therapy that directs a beam of radiation from outside the body, toward cancerous tissues inside the body.External beam radiation therapy (EBRT) is the most common type of radiation therapy. It directs high-energy radiation beams at the cancer.Copper tube is used in EBRT.
To learn more about External Beam Radiation. Therapy (EBRT) refer:https://brainly.com/question/1889767
#SPJ2
You are inside a room with a temperature of 11°C. You step outside and the temperature is 100°C. What is the AT?
A) 0.76°C
B) 157°C
C) 89°C
D) 6052°C
E) 1.31°C
F) 21°C
Answer:
89°c
Explanation:
i think this is the answer cause the temperature changed from 11 to 100 and so the atmospheric temperature would be the change in temperature
100-11=89°c
I hope this helps and sorry if it's wrong
what is the mass of 4 moles of fluorine atoms?
Answer:
Vien, sometimes we make problems like this harder than they need to be. Suppose I asked you, “How many dozen wheels are on four dozen automobiles?” You would have no trouble answering 4 x 4 = 16 dozen.
A mole is just a quantity like a dozen. And in this case, instead of 4 wheels, each C2F6 molecule bears 6 fluorine atoms, right?
So 4 x 6 = 24 moles of fluorine atoms. You’ve got this, Vien!
What alcohol is formed formed when the Alkene is treated with H2O in the presence of h2so4
Explanation:
Ethanol is made by the hydration of ethylene in the presence of a catalyst such as sulfuric acid (H 2SO 4).
Carbon NMR spectroscopy produces a spectrum of only carbon-13 nuclei in a sample. The number of carbon signals in the spectrum corresponds to the number of ________in the molecule. In most carbon NMR spectra, the carbon signals appear as singlet peaks .
Answer:
carbons that are in different environments
Explanation:
When molecules are asymmetric every carbon will have its own peak since they are all different and will show up with a different ppm shift. If the molecule has symmetry the carbons that are symmetrical (in the same environment) will have the same ppm shift and will therefore show up as one peak.
An example of a molecule with symmetry is isopropanol which has 3 carbons but only two carbon peaks since the two methyl groups are symmetrical.
An example of a molecule with no symmetry is 3-Nitroaniline where the groups coming off of the benzene ring makes each of the 6 carbons be in different environments and there for all 6 carbons will have different ppm shifts. The result is a carbon NMR that has 6 peaks.
I hope this helps. Let me know if anything is unclear.
Carbon NMR spectroscopy produces a spectrum of only carbon-13 nuclei in a sample. The number of carbon signals in the spectrum corresponds to the number of different number of carbon in the molecule.
What is spectroscopy ?The study of spectroscopy involves measuring and analyzing the electromagnetic spectra that emerge from the interaction of electromagnetic radiation with matter as a function of the radiation's wavelength or frequency.
Three indications Pentane has a mirror plane that runs directly through the center, just like in the ethane example. Three different sorts of carbon atoms may be seen in the molecule of pentane if we rotate it 180 degrees at a time.
Thus, The number of carbon signals in the spectrum corresponds to the number of different number of carbon in the molecule.
To learn more about spectroscopy, follow the link;
https://brainly.com/question/5402430
#SPJ2
How many moles of (CH3)3NH+ are in 6.0 g of (CH3)3NH+?
Answer:
0.1 mol
Explanation:
6/(15*3+15)
0.1 mol moles of (CH3)3NH+ are in 6.0 g of (CH3)3NH+
What is mole?
The mole, symbol mol, exists as the SI base unit of the amount of substance. The quantity amount of substance exists as a measure of how many elementary entities of a provided substance exist in an object or sample.A mole corresponds to the mass of a substance that includes 6.023 x 1023 particles of the substance. The mole exists the SI unit for the amount of a substance. Its symbol stands mol.
The compound trimethylamine, (CH3 )3N, exists as a weak base when dissolved in water.
A mole exist expressed as 6.02214076 × 1023 of some chemical unit, be it atoms, molecules, ions, or others. The mole exists as a convenient unit to utilize because of the great number of atoms, molecules, or others in any substance.
To find the amount of the substance (CH3)3NH+ to calculate its molar mass:
M((CH3)3NH+) = (12+3)*3 + 14+1 = 60 g/mol
n((CH3)3NH+) = m/M
m((CH3)3NH+) = 6g
Thus,
n((CH3)3NH+) = 6g/60 g/mol = 0.1 mol
Hence,
n((CH3)3NH+) = 0.1 mol
To learn more about mole refer to:
https://brainly.com/question/27952946
#SPJ2
Consider the following chemical reaction:
2SO2 (g) + O2 (g) -----------> 2SO3 (g)
1.50 L. of sulfur trioxide at the pressure of 1.20 atm. and temperature of 25 oC is mixed with excess of oxygen.
Calclate volume of the product in L. at STP.
A. 11.2 L.
B. 1.65 L.
C. 16.5 L.
D. 0.129 L.
Answer:
B. 1.65 L
Explanation:
Step 1: Write the balanced equation
2 SO₂(g) + O₂(g) ⇒ 2 SO₃(g)
Step 2: Calculate the moles of SO₂
The pressure of the gas is 1.20 atm and the temperature 25 °C (298 K). We can calculate the moles using the ideal gas equation.
P × V = n × R × T
n = P × V / R × T
n = 1.20 atm × 1.50 L / (0.0821 atm.L/mol.K) × 298 K = 0.0736 mol
Step 3: Calculate the moles of SO₃ produced
0.0736 mol SO₂ × 2 mol SO₃/2 mol SO₂ = 0.0736 mol SO₃
Step 4: Calculate the volume occupied by 0.0736 moles of SO₃ at STP
At STP, 1 mole of an ideal gas occupies 22.4 L.
0.0736 mol × 22.4 L/1 mol = 1.65 L
The critical mass of fissionable material is the largest mass necessary to sustain a nuclear fission chain reaction. single mass value that can sustain a nuclear fission chain reaction. mass at the critical point, which can sustain a nuclear fission chain reaction. smallest mass necessary to sustain a nuclear fission chain reaction.
Answer:
smallest mass necessary to
Explanation:
The critical mass for a fissionable material is the smallest and the lowest quantity of a particular fissile material required to generate a self-sustaining fission chain reaction under specified conditions. The size's features are determined by a number of variables. Examples include;
The type of fissile material employed, its purity as well as concentration, the shape of the surrounding reaction system e.t.c.
Answer:
Fill in the blanks with the terms that complete the sentences about nuclear power plants.
Without a critical mass of fissionable material, a nuclear reaction cannot be sustained. The turbine is powered by steam.
Explanation:
The answers to both parts are marked in bold. I just answered these questions on Edge and they were both correct. Hope this helps. Please mark my answers as the brainiest. THANK YOU!!!!!!!!!!!!!!!!!!!
Please help with all 3 parts!
Answer:
1:Part A.
[tex]\bold{42.2 g C_{12}H_{22}O_{11} \:in \:528 g H₂O}[/tex]
Mass Percent=[tex]\bold{\frac{Mass\: of \:Solute}{Mass\: of \:Solution}×100\%}[/tex]
=[tex]\frac{42.2}{528}*100\%=\bold{\underline{7.99\: or \:8\%}}[/tex]
Part B.
[tex]\bold{198\:m g\: C_{6}H_{12}O_{6} \:in\:4.71 g\: H₂O}[/tex]
mass of solute: 198mg
mass of solvent :4.71g=4710g
Mass Percent=[tex]\bold{\frac{Mass\: of \:Solute}{Mass\: of \:Solution}×100\%}[/tex]
=[tex]\frac{198}{4710}*100\%=\bold{\underline{4.20\%}} [/tex]
Part C.
[tex]\bold{8.85 g NaCl \:in \:190 g\: H₂O}[/tex]
Mass Percent=[tex]\bold{\frac{Mass\: of \:Solute}{Mass\: of \:Solution}×100\%}[/tex]
=[tex]\frac{8.85}{190}*100\%=\bold{\underline{4.66\%}}[/tex]
Answer:
It will help you !!!!!!!!!!
Which of the following statements is true about what happens in all chemical reactions? A. The ways in which atoms are joined together is not changed. B. Bonds between atoms are broken and new bonds are formed. C. The final substances are called reactants.
Answer:
B.bonds are broken and new bonds are formed
A Grignard reagent is prepared by reacting trans-1-bromo-1-butene with magnesium. What are the products of the reaction when this reagent is reacted with: a. Ethanol
Solution :
A Grignard compound or a Grignard reagent is defined as a chemical compound having a generic formula of R−Mg−X.
Here, X = halogen
R = organic group
The Grignard reagents are obtained by treating the organic halide with a magnesium metal.
In the context, when trans-1-bromo-1-butene is reacted with magnesium, a Grignard reagent is produced.
When this Grignard reagent is reacted with an ethanol, the following product is obtained in the attachment :
Calculate the molarity of the following solution.
45.7 g C10H12 in 5230 mL of solution
unit:
Answer:
Molarity = Moles of solute/Volume of solution(in Litres)
Solute = C10H12
moles of solute = Mass/Molar Mass
Molar Mass of C10H12 = 10(12) + 12(1)
= 132gmol-¹
Mole = 45.7/132 = 0.346mol
Molarity = 0.346/5.23
=0.066M
Predict the missing component in the nuclear equation.
238 92U → 234 90Th + X
A. 4 2He
B. 0 -1e
C. 0 0v
Answer:
A
Explanation:
helium (alpha particle)
tính ΔH° của phả ứng sau ở 200°C
CO+1÷2O=CO2
ΔH°
A new member of your team is visually impaired. He's having a hard time reading his computer screen. How can you show that you value diversity? a) Suggest the organization may not be a great fit. O b) Tell him to apply for a different job within the organization that does not b) require computer usage. 12 Od Tell him that he might want to schedule an eye exam. c) d) Provide access to technology that can magnify or read what is on the computer screen.
Answer:
C
Explanation:
If he can't read his computer screen. Means his eyes have problem
A new member of your team is visually impaired. He's having a hard time reading his computer screen. value diversity require computer usage. 12 Tell him that he might want to schedule an eye exam. Therefore, option C is correct.
What is value diversity ?Institutions and community members who value diversity do so in order to recognize the advantages of both their differences and commonalities. They make a deliberate effort to forge enduring connections between individuals and organizations with a broad membership.
When people's unique qualities, abilities, interests, and viewpoints are recognized and supported, they develop a stronger sense of self and health and achieve better results in their academic and professional endeavors.
Although diversity and inclusion are related ideas, they are not the same thing. Diversity has to do with representation or how something is put together. The degree to which the contributions, presence, and viewpoints of other groups of individuals are appreciated and incorporated into a setting is referred to as inclusion.
Thus, option C is correct.
To learn more about value diversity, follow the link;
https://brainly.com/question/13375809
#SPJ2
According to the Vaporization Heat table, the heat needed for 1 mol of H2O to evaporate at 100°C is 40.7KJ and 44.0KJ/mol is needed to evaporate H2O at 25°C. Thus 44.0-40.7=3.7KJ is the energy needed to heat H2O to 100°C from 25°C.
However, according to the heat capacity of H2O, 3.7KJ will only warm the water by ~+43°C, which is not enough to reach 100°C starting from 25°C!
Am I missing something?!
Suppose you have a material in it's liquid phase. As you give energy to that liquid, the temperature of the liquid will increase gradually, and the relation between the increase of temperature and the given energy is the specific heat.
Now, there is a point, a critical point, where the temperature stops to increase, which means that we are near a change of phase. So from this point on, the energy is not used to increase the kinetic energy of the particles (which would increase the temperature), the energy is used to break the bonds and allow a change of phase, for example, from liquid to gas.
So, we know that if you have a mol of water at 100°C, then you need to add 40.7 kJ of energy to change the phase of the water from liquid to gas phase.
This means that if you have a mol of water and you give that exact energy, the temperature will not change, instead, you now will have a mol of water at the temperature of 100°C.
Similarly with the case at 25°C (which happens for a particular pressure only)
So the heat of vaporization can not really be related to increases in temperature as you thought.
For changes in temperature, you need to use the specific heat.
We know that for water it is:
c = 4.184 J/g*°C = 76.15 J/mol*°C
So, if you want to increase the temperature from 25° to 100°
This means an increase of 75°C of one mol of water.
We just need to multiply the above number by:
1mol*(75°C)
Energy needed = (76.15 J/mol*°C)*1mol*(75°C) = 5,711.25 J
If you want to learn more, you can read:
https://brainly.com/question/11297584
How many moles of Al2O3 can be formed from 10.0 g of Al?
Select an answer and submit. For keyboard navigation, use the up/down arrow keys to
select an answer.
Answer:
n Al= 10/27( mol)- >n Al2O 3 =5/27(mol)
Explanation:
A solution of acetic acid and water contains 205.0 g L-1 of acetic acid and 820.0 g L-1 of water. Compute the density of the solution ( report your answer in g per mL)
Answer:
[tex]\rho_t=1025000 gmL^{-1}[/tex]
Explanation:
From the question we are told that:
Density of acetic acid [tex]\rho_a=205 gL^{-1}[/tex]
Density of Water [tex]\rho_w=820 gL^{-1}[/tex]
Generally the equation for Solution Density is mathematically given by
[tex]\rho_t= \rho_w+\rho_a[/tex]
[tex]\rho_t=205+820[/tex]
[tex]\rho_t=1025 gL^{-1}[/tex]
[tex]\rho_t=1025000 gmL^{-1}[/tex]
It is advised that the bromobenzene solution be added slowly to the magnesium-ether solution so that it isn't present in a high concentration, thus reducing the amount of by-product formed. What is the by-product
Answer:
Biphenyl
Explanation:
The reaction of bromo benzene with magnesium-ether solution yields a Grignard reagent.
The byproduct of this reaction is biphenyl. It is formed when two unreacted bromobenzene molecules are coupled together.
Hence, It is advised that the bromobenzene solution be added slowly to the magnesium-ether solution so that it isn't present in a high concentration, thus reducing the amount of biphenyl by-product formed.
34. 3.15 mol of an unknown solid is placed into enough water to make 150.0 mL of solution. The solution's temperature increases by 11.21°C. Calculate ∆H, in kJ/mol, for the dissolution of the unknown solid. (The specific heat of the solution is 4.184 J/g・°C and the density of the solution is 1.20 g/mL).
Answer:
ΔH = 2.68kJ/mol
Explanation:
The ΔH of dissolution of a reaction is defined as the heat produced per mole of reaction. We have 3.15 moles of the solid, to find the heat produced we need to use the equation:
q = m*S*ΔT
Where q is heat of reaction in J,
m is the mass of the solution in g,
S is specific heat of the solution = 4.184J/g°C
ΔT is change in temperature = 11.21°C
The mass of the solution is obtained from the volume and the density as follows:
150.0mL * (1.20g/mL) = 180.0g
Replacing:
q = 180.0g*4.184J/g°C*11.21°C
q = 8442J
q = 8.44kJ when 3.15 moles of the solid react.
The ΔH of the reaction is:
8.44kJ/3.15 mol
= 2.68kJ/mol