Answer:
16 cm^2/min
Step-by-step explanation:
dV/dt=24
V=a^3, differentiate with respect to t
dV/dt=3a^2*da/dt, a^2*da/dt=8
S=6a^2, 216=6a^2. a=6. da/dt=(8/36)
dS/dt=12*a*da/dt=12*(8/6)=16 cm^2/min
35 + 3 x n with n = 7
I need help please can not figure out this problem
What is the volume of a cone with a radius of 4 inches and height of 11?
Answer:
184.22
Step-by-step explanation:
strontium-90 is a radioactive material that decays according to the function A(t)=A0e−0.0244t, where A0 is the initial amount present and A is the amount present at time t (in years). Assume that a scientist has a sample of 400 grams of strontium-90.
(a) What is the decay rate of strontium-90?
(b) How much strontium-90 is left after 30 years?
(c) When will only 100 grams of strontium-90 be left?
(d) What is the half-life of strontium-90?
(a) The decay rate of strontium-90 is nothing%.
(Type an integer or a decimal. Include the negative sign for the decay rate.)
Answer:
Step-by-step explanation:
The decay rate of strontium-90 is -.0244 as given.
For b., we have to use the formula to find out how much is left after 30 years. This will be important for part d.
[tex]A(t)=400e^{-.0244(30)}[/tex] which simplifies a bit to
A(t) = 400(.4809461353) so
A(t) = 192.4 g
For c., we have to find out how long it takes for the initial amount of 400 g to decay to 100:
[tex]100=400e^{-.0244t}[/tex]. Begin by dividing both sides by 400:
[tex].25=e^{-.0244t[/tex] and then take the natural log of both sides:
[tex]ln(.25)=lne^{-.0244t[/tex] . The natural log and the e cancel each other out since they are inverses of one another, leaving us with:
ln(.25) = -.0244t and divide by -.0244:
61.8 years = t
For d., we figured in b that after 30 years, 192.4 g of the element was left, so we can use that to solve for the half-life in a different formula:
[tex]A(t)=A_0(.5)^{\frac{t}{H}[/tex] and we are solving for H. Filling in:
[tex]192.4=400(.5)^{\frac{30}{H}[/tex] and begin by dividing both sides by 400:
[tex].481=(.5)^{\frac{30}{H}[/tex] and take the natural log of both sides, which allows us to pull the exponent out front. I'm going to include that step in with this one:
ln(.481) = [tex]\frac{30}{H}[/tex] ln(.5) and then divide both sides by ln(.5):
[tex]\frac{ln(.481)}{ln(.5)}=\frac{30}{H}[/tex] and cross multiply and isolate the H to get:
[tex]H=\frac{30ln(.5)}{ln(.481)}[/tex] and
H = 28.4 years
*20 points*
What is the probability of drawing yellow marble followed by a red marble from a bag containing 12 yellow marbles, 14 red marbles, and 15 green marbles if the first marble is not replaced?
a. 192/1,849
b. 18/43
c. 21/205
Answer:
c: 21/205
Step-by-step explanation:
The probability of choosing a yellow marble first is 12/41 bc there are 12 yellow marbles and 41 marbles to choose from.
The probability of choosing a red marble is 14/40 bc there are 14 red marbles and 40 marbles to choose from( since you have removed the marble you first chose so there are 40 marbles left).
Multiplying these two together, 12/41 * 14/40 = 168/1640, simplified it's 21/205.
give the size of the letter figure below
Answer: 150 degrees
Step-by-step explanation: 10+ 20 = 30
180-30 = 150 degrees.
Find the area of a triangle as a mixed number.
Answer:
I believe the answer is 4 37/50!
write your answer in simplest radical form
Answer:
z = √3
Step-by-step explanation:
sin (30°) = z / 2√3
z = sin (30°) 2√3
z = √3
Mathematics question help
Distance Formula: [tex]\sqrt{(x_{2} - x_{1})^2 + (y_{2} - y_{1})^2}[/tex]
Point 1: (9,0)
Point 2: (5,-8)
D = sqrt[ (5 - 9)^2 + (-8 - 0)^2 ]
D = sqrt[ (-4)^2 + (-8)^2 ]
D = sqrt[ 16 + 64]
D = sqrt(80)
Hope this helps!
lim(x-0) (sinx-1/x-1)
9514 1404 393
Answer:
as written: the limit does not existsin(x-1)/(x-1) has a limit of sin(1) ≈ 0.841 at x=0Step-by-step explanation:
The expression written is interpreted according to the order of operations as ...
sin(x) -(1/x) -1
As x approaches 0 from the left, this approaches +∞. As x approaches 0 from the right, this approaches -∞. These values are different, so the limit does not exist.
__
Maybe you intend ...
sin(x -1)/(x -1)
This can be evaluated directly at x=0 to give sin(-1)/-1 = sin(1). The argument is interpreted to be radians, so sin(1) ≈ 0.84147098...
The limit is about 0.841 at x=0.
In a class of students, the following data table summarizes how many students have a cat or a dog. What is the probability that a student who has a cat also has a dog?
Has a cat Does not have a cat
Has a dog 7 6
Does not have a dog 8 2
Hi. I need help with part b thank you so much if you can do so
9514 1404 393
Answer:
Yes, that distance is the hypotenuse of a right triangle whose sides are known
Step-by-step explanation:
The diagram seems to show the path of the ball as being two segments that are at right angles to each other. Then the direct-line distance to the hole from the tee is the hypotenuse (part A) of the triangle.
Since the leg lengths are known, the Pythagorean theorem can be used (part B) to find the length of the hypotenuse. (The answer to Part B is also the answer to Part C.)
[18].Simplify (TTE): x(2x+y+5) - 2(x²+xy+5) + y(x + y)
Answer:
[tex]x(2x+y+5) - 2(x\²+xy+5) + y(x + y) = 5x -10 + y\²[/tex]
Step-by-step explanation:
Given
[tex]x(2x+y+5) - 2(x\²+xy+5) + y(x + y)[/tex]
Required
Simplify
We have:
[tex]x(2x+y+5) - 2(x\²+xy+5) + y(x + y)[/tex]
Open brackets
[tex]x(2x+y+5) - 2(x\²+xy+5) + y(x + y) = 2x\²+xy+5x - 2x\²-2xy-10 + xy + y\²[/tex]
Collect like terms
[tex]x(2x+y+5) - 2(x\²+xy+5) + y(x + y) = 2x\²- 2x\²+xy-2xy+ xy+5x -10 + y\²[/tex]
[tex]x(2x+y+5) - 2(x\²+xy+5) + y(x + y) = 5x -10 + y\²[/tex]
Please help me with 9 I really need it
Answer:
605 boys.
Step-by-step explanation:
5:7 means 5 parts consists of boys and 7 parts consist of girls.
Since 7 parts = 847, 1 part = 121 and 5 parts = 605
Hence there are 605 boys.
Hope you have a nice day :)
Part b c and d please help
Answer:
b) Y =5.73X +4.36
C) =5.73225*(21)X +4.359
124.73625
D) 163.728 = 5.73X +4.36
X = (163.728 - 4.36)/5.73
X = 27.81291449
Year would be 2027
Step-by-step explanation:
x1 y1 x2 y2
4 27.288 16 96.075
(Y2-Y1) (96.075)-(27.288)= 68.787 ΔY 68.787
(X2-X1) (16)-(4)= 12 ΔX 12
slope= 5 41/56
B= 4 14/39
Y =5.73X +4.36
A water trough is 9 m long and has a cross-section in the shape of an isosceles trapezoid that is 20 cm wide at the bottom, 70 cm wide at the top, and has height 50 cm. If the trough is being filled with water at the rate of 0.2 m3/min how fast is the water level rising when the water is 20 cm deep?
Answer:
dv = surface area * dh
so
dv/dt = surface area * dh/dt
width at surface = 40 + (80-40)(30/40)
= 40 + 30 = 70 cm = 0.70 m
so
surface area = 9 * .7 = 6.3 m^2
so
.3 m^3/min = 6.3 m^2 * dh/dt
and
dh/dt = .047 meters/min or 4.7 cm/min
Step-by-step explanation:
in each figure below find m<1 and m < 2 if a||b
please help i don't have a lot of time I will give brainliest if you help
Answer:
m∠1 = 105°
m∠2 = 75°
Step-by-step explanation:
From the picture attached,
Two lines 'a' and 'b' are parallel and a transversal 't' is intersecting these lines at two distinct lines.
Therefore, m∠2 = 75° [Corresponding angles measure the same]
m∠1 + m∠2 = 180° [Linear pair of angles are supplementary]
m∠1 + 75° = 180°
m∠1 = 105°
Conan puts tennis balls into tubes after gym class. There are 17 tennis balls, and each tube holds 3 balls. How many tubes does Conan completely fill? How many tennis balls are left?
Find the derivative on the value of x=-4
[tex]y=(6x-5)\sqrt{8x-3}[/tex]
[tex]\\ \sf\longmapsto y=(6x-5)\sqrt{8x-3}[/tex]
[tex]\\ \sf\longmapsto y=6(-4)-5\sqrt{8(-4)-3}[/tex]
[tex]\\ \sf\longmapsto y=-24-5\sqrt{-32-3}[/tex]
[tex]\\ \sf\longmapsto y=-29\sqrt{-35}[/tex]
[tex]\\ \sf\longmapsto y=-29\times 35i[/tex]
[tex]\\ \sf\longmapsto y=-1015i[/tex]
PLZ ANSWER QUESTION IN PICTURE
Answer: y = 3x + 6
Step-by-step explanation:
(x-intercept of -2: (-2,0))
(slope = m)
y = mx + b, (-2,0), m = 3
[tex]y=mx+b\\0=3(-2)+b\\0=-6+b\\b=6\\y=3x+6[/tex]
Three numbers form an arithmetic sequence whose
common difference is 3. If the first number is
increased by 1, the second increased by 6, and
the third increased by 19, the resulting three
numbers form a geometric sequence. Determine
the original three numbers.
Let x be the first number in the sequence. Then the first three numbers are
{x, x + 3, x + 6}
The next sentence says that the sequence
{x + 1, x + 9, x + 25}
is geometric, which means there is some fixed number r for which
x + 9 = r (x + 1)
x + 25 = r (x + 9)
Solve for r :
r = (x + 9)/(x + 1) = (x + 25)/(x + 9)
Solve for x :
(x + 9)² = (x + 25) (x + 1)
x ² + 18x + 81 = x ² + 26x + 25
8x = 56
x = 7
Then the three numbers are
{7, 10, 13}
(x/4) + (2x/7 =135 solve it
Answer:
the ans is 252................
If we decrease a dimension on a figure, how is the figure’s area affected?
The area decreases.
The area increases.
The area becomes 0.
The area remains the same.
What is the phase of y= -3cos (3x-pi) +5
Answer:
[tex]- \frac{\pi}{3}[/tex]
Step-by-step explanation:
Given
[tex]y = -3\cos(3x - \pi) + 5[/tex]
Required
The phase
We have:
[tex]y = -3\cos(3x - \pi) + 5[/tex]
Rewrite as:
[tex]y = -3\cos(3(x - \frac{\pi}{3})) + 5[/tex]
A cosine function is represented as:
[tex]y = A\cos(B(x + C)) + D[/tex]
Where:
[tex]C \to[/tex] Phase
By comparison:
[tex]C = - \frac{\pi}{3}[/tex]
Hence, the phase is: [tex]- \frac{\pi}{3}[/tex]
A professor knows that her statistics students' final exam scores have a mean of 79 and a standard deviation of 11.3. In his class, an "A" is any exam score of 90 or higher. This quarter she has 22 students in her class. What is the probability that 6 students or more will score an "A" on the final exam?
prob =
0.1449 = 14.49% probability that 6 students or more will score an "A" on the final exam.
---------------
For each student, there are only two possible outcomes. Either they score an A, or they do not. The probability of a student scoring an A is independent of any other student, which means that the binomial probability distribution is used to solve this question.
Additionally, to find the proportion of students who scored an A, the normal distribution is used.
----------------
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of a success.
----------------
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean and standard deviation , the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
----------------
Proportion of students that scored an A:
Scores have a mean of 79 and a standard deviation of 11.3, which means that [tex]\mu = 79, \sigma = 11.3[/tex]
Scores of 90 or higher are graded an A, which means that the proportion is 1 subtracted by the p-value of Z when X = 90, so:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{90 - 79}{11.3}[/tex]
[tex]Z = 0.97[/tex]
[tex]Z = 0.97[/tex] has a p-value of 0.8340.
1 - 0.8340 = 0.166
The proportion of students that scored an A is 0.166.
----------------
Probability that 6 students or more will score an "A" on the final exam:
Binomial distribution.
22 students, which means that [tex]n = 22[/tex]
The proportion of students that scored an A is 0.166, which means that [tex]p = 0.166[/tex]
The probability is:
[tex]P(X \geq 6) = 1 - P(X < 6)[/tex]
In which
[tex]P(X < 6) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)[/tex]
Then
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{22,0}.(0.166)^{0}.(0.834)^{22} = 0.0184[/tex]
[tex]P(X = 1) = C_{22,1}.(0.166)^{1}.(0.834)^{21} = 0.0807[/tex]
[tex]P(X = 2) = C_{22,2}.(0.166)^{2}.(0.834)^{20} = 0.1687[/tex]
[tex]P(X = 3) = C_{22,3}.(0.166)^{3}.(0.834)^{19} = 0.2239[/tex]
[tex]P(X = 4) = C_{22,4}.(0.166)^{4}.(0.834)^{18} = 0.2117[/tex]
[tex]P(X = 5) = C_{22,5}.(0.166)^{5}.(0.834)^{17} = 0.1517[/tex]
Then
[tex]P(X < 6) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) = 0.0184 + 0.0807 + 0.1687 + 0.2239 + 0.2117 + 0.1517 = 0.8551[/tex]
[tex]P(X \geq 6) = 1 - P(X < 6) = 1 - 0.8551 = 0.1449[/tex]
Thus
0.1449 = 14.49% probability that 6 students or more will score an "A" on the final exam.
For a problem that used the normal distribution, you can check https://brainly.com/question/15181104, and for a problem that used the binomial distribution, you can check https://brainly.com/question/15557838
The smallest positive solution of tan bx = 2 is x = 0.3. Determine the general solution of tan bx = 2.
The general solution of [tex]\tan bx = 2[/tex] and [tex]x = 0.3[/tex] is [tex]x = 0.095\pi \mp 0.271\pi\cdot i[/tex], [tex]\forall \,i\in \mathbb{N}_{O}[/tex].
From Trigonometry we remember that Tangent is a Transcendental Function that is positive both in 1st and 3rd Quadrants and have a periodicity of [tex]\pi[/tex] radians. The procedure consists in using concepts of Direct and Inverse Trigonometric Functions as well as characteristics related to the behavior of the tangent function in order to derive a General Formula for every value of [tex]x[/tex], measured in radians.
First, we solve the following system of equations for [tex]b[/tex]:
[tex]\tan bx = 2[/tex] (1)
[tex]x = 0.3[/tex] (2)
Please notice that angles are measured in radians.
(2) in (1):
[tex]\tan 0.3b = 2[/tex]
[tex]0.3\cdot b = \tan^{-1} 2[/tex]
[tex]b = \frac{10}{3}\cdot \tan^{-1}2[/tex]
[tex]b\approx 3.690[/tex]
Under the assumption of periodicity, we know that:
[tex]y = \tan bx[/tex]
[tex]b\cdot x \pm \pi\cdot i = \tan^{-1} y[/tex], [tex]\forall \,i\in \mathbb{N}_{O}[/tex]
[tex]b\cdot x = \tan^{-1}y \mp \pi\cdot i[/tex]
[tex]x = \frac{\tan^{-1}y \mp \pi\cdot i}{b}[/tex]
If we know that [tex]y = 2[/tex] and [tex]b \approx 3.690[/tex], then the general solution of this trigonometric function is:
[tex]x = \frac{0.352\pi \mp \pi\cdot i}{3.690}[/tex], [tex]\forall \,i\in \mathbb{N}_{O}[/tex]
[tex]x = 0.095\pi \mp 0.271\pi\cdot i[/tex], [tex]\forall \,i\in \mathbb{N}_{O}[/tex]
The general solution of [tex]\tan bx = 2[/tex] and [tex]x = 0.3[/tex] is [tex]x = 0.095\pi \mp 0.271\pi\cdot i[/tex], [tex]\forall \,i\in \mathbb{N}_{O}[/tex].
For further information, you can see the following outcomes from another users:
https://brainly.com/question/3056589
https://brainly.com/question/11526967
Can someone do #4 and #5
Answer:
First, find two points on the graph:
(x₁, y₁) = (0, 2)(x₂, y₂) = (2, 8)Slope = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1}} = \frac{8-2}{2-0} =\frac{6}{2}=3[/tex]
16 + (-3) = 16 - 3 = 13
What is the first step to solve the equation 16x-21 = 52?
1 Add 52 to both sides
2 Add 21 to both sides
3 Subtract 21 from both sides
4 Subtract 52 from both sides
Answer:
2) Add 21 to both sides
Step-by-step explanation:
When solving [tex]16x-21=52[/tex] for [tex]x[/tex], our goal to isolate [tex]x[/tex] such that we have [tex]x[/tex] set equal to something.
Therefore, we want to start by adding 21 to both sides. This leaves us with [tex]16x=73[/tex] and we are one step closer to isolating [tex]x[/tex].
if my savings of $x grows 10 percent each year, how much will i have in 2 years?
Answer:
$240
Step-by-step explanation:
A year has 12 month in it so lets multiply the 10 by 12 which is $120,Mean a year is $120 so 2years will be $120×2 which is $240
Answer:
x+1/5x
Step-by-step explanation:
Because the eqaution would be x+10%=x+1/10+10%=1/5+x
Then the equation equals x+1/5
Area and perimeter please?
Answer:
Area = 240 cm²
Perimeter = 80 cm
Step-by-step explanation:
✔️ Area of the triangle = ½*base*height
base of the triangle = 24 cm
height = 20 cm
Plug in the known values
Area = ½*24*20
= 12*20
Area = 240 cm²
✔️Perimeter of the triangle = sum of all the three sides that make up the triangle
Perimeter = 22 + 24 + 34
= 80 cm