On Monday, Main Street station sells 40 tickets.
There are four types of ticket; infant, child, adult and senior.
The bar chart shows the number of infant, child and adult tickets sold.

How many Senior tickets sold ?

Find how many adult tickets were sold than child tickets ?
BOTH QUESTIONS ANSWER NEEDED PLES HELP

On Monday, Main Street Station Sells 40 Tickets.There Are Four Types Of Ticket; Infant, Child, Adult

Answers

Answer 1

Answer:

0 senior tickets were sold

5 more adult tickets were sold than chil tickets

Step-by-step explanation:

You need to see the frequency of each bar

Answer by Gauthmath


Related Questions

are ratios 2:3 and 8:12 equalvelent to eachother

Answers

Answer:

2:3 is equal to 8:12

Step-by-step explanation:

2:3

To get the first number to 8

8/2 = 4

Multiply by all terms 4

2*3 : 3*4

8:12

2:3 is equal to 8:12

8:12 = 8/12

= 2/3

= 2:3

Therefore 2:3 and 8:12 are equalent to each other.

Answered by Gauthmath must click thanks and mark brainliest

I need help
With these

Answers

Answer:

"A"

Step-by-step explanation:

a+b >c

a+c>b

b+c>a

~~~~~~~~~~~~

A. T,T,T

B. T,T,F

C. T,F,T

An office manager has received a report from a consultant that includes a section on equipment replacement. The report indicates that scanners have a service life that is normally distributed with a mean of 41 months and a standard deviation of 4 months. On the basis of this information, determine the proportion of scanners that can be expected to fail within plus or minus 6 months of the mean. (Enter your answer as a percentage without the percent sign; keep 2 decimal places)

Answers

Answer:

The answer is "36.14%"

Step-by-step explanation:

The complete question is given in the attached file please find it.

[tex]\mu =41\\\\\sigma= 4\\\\P(42<\bar{x}<48)= p(\bar{x}<48)-p(\bar{x}<42)\\\\Z =\frac{(42-41)}{4} = \frac{1}{4} =0.25\\\\Z =\frac{(48-41)}{4} = \frac{7}{4} = 1.75\\\\[/tex]

Using z-table to find the value.

[tex]\to P(41<\bar{x}<48) = 0.9599- 0.5987 = 0.3614\times 100= 36.14\%[/tex]

This means that between 42 and 48 months, 36.14 % of scanners could be predicted will break down.

Using a profit P1 of $5,000, a profit P2 of $4,500, and a profit P3 of $4,000, calculate a 95% confidence interval for the mean profit per customer that SoftBus can expect to obtain. (Round your answers to one decimal place.) Lower Limit Upper Limit

Answers

Answer:

Confidence Interval

Lower Limit = $4,233.3

Upper Limit = $4,766.7

With 95% confidence, the mean profit per customer that SoftBus can expect to obtain is between $4,233.30 and $4,766.7 based on the given sample data.

Step-by-step explanation:

The z-score of 95% = 1.96

             Profit         Mean      Square Root

                          Difference    of MD

P1        $5,000       $500        $250,000

P2         4,500          0              0

P3         4,000       -500         $250,000

Total $13,500                        $500,000

Mean $4,500 ($13,500/3)    $166,667 ($500,000/3)

Standard Deviation = Square root of $166,667 = 408.2

Margin of error = (z-score * standard deviation)/n

= (1.96 * 408.2)/3

= 266.7

= $266.7

Confidence Interval = Sample mean +/- Margin of error

= $4,500 +/- 266.7

Lower Limit = $4,233.3 ($4,500 - $266.7)

Upper Limit = $4,766.7 ($4,500 + $266.7)

Jagroop is building a dock at his cottage. The length of the doc is 3 times the width, plus 2. Determine a simplified expression for the perimeter of the doc

Answers

Answer:

Step-by-step explanation:

Let length = y    width = x

y = 3x + 2

Perimeter = Sum of all sides (or sum of both lengths and both widths)

2y + 2x

2(3x + 2) + 2x

6x + 4 + 2x

8x + 4

Which expression is equivalent to
128xy
5 ? Assume x > 0 and y> 0.
2xy5
Moto
8
yax
8
BV
y
8.VY
X

Answers

Answer:

[tex]\sqrt{128x^8y^3} = 8 x^4 y \sqrt{2y}[/tex]

Step-by-step explanation:

Given

[tex]\sqrt{128x^8y^3}[/tex] --- the complete expression

Required

The equivalent expression

We have:

[tex]\sqrt{128x^8y^3}[/tex]

Expand

[tex]\sqrt{128x^8y^3} = \sqrt{128* x^8 * y^3}[/tex]

Further expand

[tex]\sqrt{128x^8y^3} = \sqrt{64 * 2* x^8 * y^2 * y}[/tex]

Rewrite as:

[tex]\sqrt{128x^8y^3} = \sqrt{64 * x^8 * y^2* 2 * y}[/tex]

Split

[tex]\sqrt{128x^8y^3} = \sqrt{64 * x^8 * y^2} * \sqrt{2 * y}[/tex]

Express as:

[tex]\sqrt{128x^8y^3} = (64 * x^8 * y^2)^\frac{1}{2} * \sqrt{2y}[/tex]

Remove bracket

[tex]\sqrt{128x^8y^3} = (64)^\frac{1}{2} * (x^8)^\frac{1}{2} * (y^2)^\frac{1}{2} * \sqrt{2y}[/tex]

[tex]\sqrt{128x^8y^3} = 8 * x^\frac{8}{2} * y^\frac{2}{2} * \sqrt{2y}[/tex]

[tex]\sqrt{128x^8y^3} = 8 * x^4 * y * \sqrt{2y}[/tex]

[tex]\sqrt{128x^8y^3} = 8 x^4 y \sqrt{2y}[/tex]

A rocket is launched at t = 0 seconds. Its height, in meters above sea-level, is given by the equation
h = -4.9t2 + 112t + 395.
At what time does the rocket hit the ground? The rocket hits the ground after how many seconds

Answers

Answer:

Step-by-step explanation:

In order to find out how long it takes for the rocket to hit the ground, we only need set that position equation equal to 0 (that's how high something is off the ground when it is sitting ON the ground) and factor to solve for t:

[tex]0=-4.9t^2+112t+395[/tex]

Factor that however you are factoring in class to get

t = -3.1 seconds and t = 25.9 seconds.

Since time can NEVER be negative, it takes the rocket approximately 26 seconds to hit the ground.

If sin x = –0.1 and 270° < x < 360°, what is the value of x to the nearest degree?

Answers

Answer:

354°15'38.99''

Step-by-step explanation:

Dogsled drivers, known as mushers, use several different breeds of dogs to pull their sleds. One proponent of Siberian Huskies believes that sleds pulled by Siberian Huskies are faster than sleds pulled by other breeds. He times 47 teams of Siberian Huskies on a particular short course, and they have a mean time of 5.2 minutes. The mean time on the same course for 39 teams of other breeds of sled dogs is 5.5 minutes. Assume that the times on this course have a population standard deviation of 1.4 minutes for teams of Siberian Huskies and 1.1 minutes for teams of other breeds of sled dogs. Let Population 1 be sleds pulled by Siberian Huskies and let Population 2 be sleds pulled by other breeds. Step 1 of 2 : Construct a 95% confidence interval for the true difference between the mean times on this course for teams of Siberian Huskies and teams of other breeds of sled dogs

Answers

Answer:

The 95% confidence interval for the true difference between the mean times on this course for teams of Siberian Huskies and teams of other breeds of sled dogs is (-0.8276, 0.2276).

Step-by-step explanation:

Before building the confidence interval, we need to understand the central limit theorem and subtraction of normal variables.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.  

Subtraction between normal variables:

When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.

Siberian Huskies:

Sample of 47, mean of 5.2 minutes, standard deviation of 1.4. So

[tex]\mu_1 = 5.2[/tex]

[tex]s_1 = \frac{1.4}{\sqrt{47}} = 0.2042[/tex]

Others:

Sample of 39, mean of 5.5 minutes, standard deviation of 1.1. So

[tex]\mu_2 = 5.5[/tex]

[tex]s_2 = \frac{1.1}{\sqrt{39}} = 0.1761[/tex]

Distribution of the difference:

[tex]\mu = \mu_1 - \mu_2 = 5.2 - 5.5 = -0.3[/tex]

[tex]s = \sqrt{s_1^2+s_2^2} = \sqrt{0.2042^2+0.1761^2} = 0.2692[/tex]

Confidence interval:

We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1 - 0.95}{2} = 0.025[/tex]

Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].

That is z with a pvalue of [tex]1 - 0.025 = 0.975[/tex], so Z = 1.96.

Now, find the margin of error M as such

[tex]M = zs[/tex]

In which s is the standard error. So

[tex]M = 1.96(0.2692) = 0.5276[/tex]

The lower end of the interval is the sample mean subtracted by M. So it is -0.3 - 0.5276 = -0.8276.

The upper end of the interval is the sample mean added to M. So it is -0.3 + 0.5276 = 0.2276

The 95% confidence interval for the true difference between the mean times on this course for teams of Siberian Huskies and teams of other breeds of sled dogs is (-0.8276, 0.2276).

There is a sales tax of S6 on an item that costs 888 before tax. The sales tax on a second item is $21. How much does the second item cost before tax?

Answers

Step-by-step explanation:

before Tax

Coast = 888

in 2ND Item = $21

• 888/21

= $42.28

Most of the heat loss for outdoor swimming pools is due to surface
evaporation. So, the greater the area of the surface of the pool, the greater
the heat loss. For a given perimeter, which surface shape would be more
efficient at retaining heat: a circle or a rectangle? Justify your answer.

Answers

Answer:

rectangle

Step-by-step explanation:

Perimeter of 20 feet

rectangle (square is technically a rectangle):

sides 5 and 5

5*5 = 25ft²

Circle:

20/(2π) = 3.18309...

3.1809...²π = 31.831ft²

Max area of rectangle (i.e. square) has a smaller area than a circle.

find the area of the shaded regions. ANSWER IN PI FORM AND DO NOT I SAID DO NOT WRITE EXPLANATION

Answers

Answer: 18π

okokok gg

Step-by-step explanation:

Here angle is given in degree.We have convert it into radian.

[tex] {1}^{\circ} =( { \frac{\pi}{180} } )^{c} \\ \therefore \: {80}^{\circ} = ( \frac{80\pi}{180} ) ^{c} = {( \frac{4\pi}{9} })^{c} \: = \theta ^{c} [/tex]

radius r = 9 cm

Area of green shaded regions = A

[tex] \sf \: A = \frac{1}{2} { {r}^{2} }{ { \theta}^{ c} } \\ = \frac{1}{2} \times {9}^{2} \times \frac{4\pi}{9} \\ = 18\pi \: {cm}^{2} [/tex]

A survey of 30-year-old males provided data on the number of auto accidents in the previous 5 years. The sample mean is 1.3 accidents per male. Test the hypothesis that the number of accidents follows a Poisson distribution at the 5% level of significance.

No. of accident No. of males
0 39
1 22
2 14
3 11
>=4 4

Required:
a. What's the Expected probability of finding males with 0 accidents?
b. What's the Expected probability of finding males with 4 or more accidents?

Answers

Answer:

0.2725

0.0431

Step-by-step explanation:

The distribution here is a poisson distribution :

λ = 1.3

The poisson distribution :

p(x) = [(e^-λ * λ^x)] ÷ x!

Expected probability of finding male with 0 accident ; x = 0

p(0) = [(e^-1.3 * 1.3^0)] ÷ 0!

p(0) = [0.2725317 * 1] ÷ 1

p(0) = 0.2725317

= 0.2725

2.)

P(x ≥ 4) = 1 - P(x < 4)

P(x < 4) = p(x = 0) + p(x. = 1) + p(x = 2) + p(x = 3)

p(x = 0) =  p(0) = [(e^-1.3 * 1.3^0)] ÷ 0! = 0.2725

p(x = 1) = p(1) = [(e^-1.3 * 1.3^1)] ÷ 1! = 0.35429

p(x = 2) = p(2) = [(e^-1.3 * 1.3^2)] ÷ 2! = 0.23029 p(x = 3) = p(3) = [(e^-1.3 * 1.3^3)] ÷ 0! = 0.09979

P(x < 4) = 0.2725 + 0.35429 + 0.23029 + 0.09979 = 0.95687

P(x ≥ 4) = 1 - 0.95687 = 0.0431

Which ratio is equal to 27 : 81?

Answers

3:9 and if you reduce it again, 1:3

Answer:

1:3

Step-by-step explanation:

27 : 81

Divide each side by 27

27/27 : 81/27

1:3

A store is having a sale on chocolate chips and walnuts. For 8 pounds of chocolate chips and 3 pounds of walnuts, the total cost is $34. For 2 pounds of chocolate chips and 5 pounds of walnuts, the total cost is $17. Find the cost for each pound of chocolate chips and each pound of walnuts.

Answers

Answer:

chocolate chips are $2.00 per pound.

nd walnuts must be $3.50 per pound.

Step-by-step explanation:

Let x be the price of walnuts and y the price of chocolate chips.

2x + 5y = 17 (i)

8x + 3y = 34 (ii)

Multiply (i) by 4 to get

8x + 20y = 68

Subtract (ii) to get

 17y = 34

Dividing by 17, we see that chocolate chips are $2.00 per pound.

Substituting y=2 in (i) or (ii), walnuts must be $3.50 per pound.

Rope pieces of lengths 45 cm, 75 cm and 81 cm have to be cut into same size pieces. What is the smallest piece length possible?​

Answers

Answer:

2025 cm

Step-by-step explanation:

Given the length of pieces - 45 cm, 75 cm and 81 cm

To find the length of the rope we have to find the L.C.M. of 45, 75 and 81 :

       

3  |  45, 75, 81

    | ________________      

3  |  15, 25, 27

    |________________

3  |    5, 25, 9

    |________________

3  |    5, 25, 3

    |________________

5  |    5, 25, 1

    |________________

5  |     1, 5, 1

    |________________

    |      1, 1, 1

     

L.C.M. = 3 × 3 × 3 × 3 × 5 × 5

= 2025 cm

So, the least length of the rope should be 2025 cm which can be cut into a whole number of pieces of length 45 cm, 75 cm and 81 cm.

SOMEONE HELP ME PLEASE

Answers

Answer:

9/25

Step-by-step explanation:

3 novels , 1 bio , 1 poetry = 5 books

P( novel) = novels / books

               = 3/5

Book is returned

3 novels , 1 bio , 1 poetry = 5 books

P( novel) = novels / books

               = 3/5

P(novel, return, novel) = 3/5 * 3/5 = 9/25

use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​

Answers

First check the characteristic solution: the characteristic equation for this DE is

r ² - 3r + 2 = (r - 2) (r - 1) = 0

with roots r = 2 and r = 1, so the characteristic solution is

y (char.) = C₁ exp(2x) + C₂ exp(x)

For the ansatz particular solution, we might first try

y (part.) = (ax + b) + (cx + d) exp(x) + e exp(3x)

where ax + b corresponds to the 2x term on the right side, (cx + d) exp(x) corresponds to (1 + 2x) exp(x), and e exp(3x) corresponds to 4 exp(3x).

However, exp(x) is already accounted for in the characteristic solution, we multiply the second group by x :

y (part.) = (ax + b) + (cx ² + dx) exp(x) + e exp(3x)

Now take the derivatives of y (part.), substitute them into the DE, and solve for the coefficients.

y' (part.) = a + (2cx + d) exp(x) + (cx ² + dx) exp(x) + 3e exp(3x)

… = a + (cx ² + (2c + d)x + d) exp(x) + 3e exp(3x)

y'' (part.) = (2cx + 2c + d) exp(x) + (cx ² + (2c + d)x + d) exp(x) + 9e exp(3x)

… = (cx ² + (4c + d)x + 2c + 2d) exp(x) + 9e exp(3x)

Substituting every relevant expression and simplifying reduces the equation to

(cx ² + (4c + d)x + 2c + 2d) exp(x) + 9e exp(3x)

… - 3 [a + (cx ² + (2c + d)x + d) exp(x) + 3e exp(3x)]

… +2 [(ax + b) + (cx ² + dx) exp(x) + e exp(3x)]

= 2x + (1 + 2x) exp(x) + 4 exp(3x)

… … …

2ax - 3a + 2b + (-2cx + 2c - d) exp(x) + 2e exp(3x)

= 2x + (1 + 2x) exp(x) + 4 exp(3x)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

x : 2a = 2

1 : -3a + 2b = 0

exp(x) : 2c - d = 1

x exp(x) : -2c = 2

exp(3x) : 2e = 4

Solving the system gives

a = 1, b = 3/2, c = -1, d = -3, e = 2

Then the general solution to the DE is

y(x) = C₁ exp(2x) + C₂ exp(x) + x + 3/2 - (x ² + 3x) exp(x) + 2 exp(3x)

Find the missing side lengths leave your answer as a racials simplest form

Answers

Answer:

m=[tex]7\sqrt3[/tex]

n=7

Step-by-step explanation:

Hi there!

We are given a right triangle (notice the 90°) angle, the measure of one of the acute angles as 60°, and the measure of the hypotenuse (the side OPPOSITE from the 90 degree angle) as 14

We need to find the lengths of m and n

Firstly, let's find the measure of the other acute angle

The acute angles in a right triangle are complementary, meaning they add up to 90 degrees

Let's make the measure of the unknown acute angle x

So x+60°=90°

Subtract 60 from both sides

x=30°

So the measure of the other acute angle is 30 degrees

This makes the right triangle a special kind of right triangle, a 30°-60°-90°  triangle

In a 30°-60°-90° triangle, if the length of the hypotenuse is a, then the length of the leg (the side that makes up the right angle) opposite from the 30 degree angle is [tex]\frac{a}{2}[/tex], and the leg opposite from the 60 degree angle is [tex]\frac{a\sqrt3}{2}[/tex]

In this case, a=14, n=[tex]\frac{a}{2}[/tex], and m=[tex]\frac{a\sqrt3}{2}[/tex]

Now substitute the value of a into the formulas to find n and m to find the lengths of those sides

So that means that n=[tex]\frac{14}{2}[/tex], which is equal to 7

And m=[tex]\frac{14\sqrt3}{2}[/tex], which simplified, is equal to [tex]7\sqrt3[/tex]

Hope this helps!

On the first day of travel, a driver was going at a speed of 40 mph. The next day, he increased the speed to 60 mph. If he drove 2 more hours on the first day and traveled 20 more miles, find the total distance traveled in the two days.

Answers

The Total mileage is "400" and the further solution can be defined as follows:

Let t become the time he spent commuting on the first day of his vacation.

It is then calculated as [tex]t + 2[/tex].

[tex]\to 40\times(t+2) = 60(t) + 20 \\\\\to 40t+80 = 60t + 20 \\\\\to 80-20 = 60t + 40t \\\\\to 60 = 20t \\\\\to t=\frac{60}{20} \\\\\to t=\frac{6}{2} \\\\\to t= 3\\\\[/tex]

It traveled [tex]40\times (3 + 2) + 20 = 40\times 5 + 20 = 200+20=220[/tex] miles on its first day of operation.

The car traveled [tex]180\ miles[/tex] on the second day, which was [tex]60 \ miles \times 3[/tex].

So,

Total mileage= first day traveled + second day traveled [tex]= 220+ 180= 400 \miles[/tex]

Learn more:

Total distance traveled: brainly.com/question/20670144

I need help guys thanks so much

Answers

Answer: C

Step-by-step explanation:

A computer system uses passwords that are exactly six characters and each character is one of the 26 letters (a–z) or 10 integers (0–9). Suppose that 10,000 users of the system have unique passwords. A hacker randomly selects (with replace- ment) one billion passwords from the potential set, and a match to a user’s password is called a hit. (a) What is the distribution of the number of hits? (b) What is the probability of no hits? (c) What are the mean and variance of the number of hits?

Answers

Answer:

The number of hits would follow a binomial distribution with [tex]n =10,\!000[/tex] and [tex]p \approx 4.59 \times 10^{-6}[/tex].

The probability of finding [tex]0[/tex] hits is approximately [tex]0.955[/tex] (or equivalently, approximately [tex]95.5\%[/tex].)

The mean of the number of hits is approximately [tex]0.0459[/tex]. The variance of the number of hits is approximately [tex]0.0459\![/tex] (not the same number as the mean.)

Step-by-step explanation:

There are [tex](26 + 10)^{6} \approx 2.18 \times 10^{9}[/tex] possible passwords in this set. (Approximately two billion possible passwords.)

Each one of the [tex]10^{9}[/tex] randomly-selected passwords would have an approximately [tex]\displaystyle \frac{10,\!000}{2.18 \times 10^{9}}[/tex] chance of matching one of the users' password.

Denote that probability as [tex]p[/tex]:

[tex]p := \displaystyle \frac{10,\!000}{2.18 \times 10^{9}} \approx 4.59 \times 10^{-6}[/tex].

For any one of the [tex]10^{9}[/tex] randomly-selected passwords, let [tex]1[/tex] denote a hit and [tex]0[/tex] denote no hits. Using that notation, whether a selected password hits would follow a bernoulli distribution with [tex]p \approx 4.59 \times 10^{-6}[/tex] as the likelihood of success.

Sum these [tex]0[/tex]'s and [tex]1[/tex]'s over the set of the [tex]10^{9}[/tex] randomly-selected passwords, and the result would represent the total number of hits.

Assume that these [tex]10^{9}[/tex] randomly-selected passwords are sampled independently with repetition. Whether each selected password hits would be independent from one another.

Hence, the total number of hits would follow a binomial distribution with [tex]n = 10^{9}[/tex] trials (a billion trials) and [tex]p \approx 4.59 \times 10^{-6}[/tex] as the chance of success on any given trial.

The probability of getting no hit would be:

[tex](1 - p)^{n} \approx 7 \times 10^{-1996} \approx 0[/tex].

(Since [tex](1 - p)[/tex] is between [tex]0[/tex] and [tex]1[/tex], the value of [tex](1 - p)^{n}[/tex] would approach [tex]0\![/tex] as the value of [tex]n[/tex] approaches infinity.)

The mean of this binomial distribution would be:[tex]n\cdot p \approx (10^{9}) \times (4.59 \times 10^{-6}) \approx 0.0459[/tex].

The variance of this binomial distribution would be:

[tex]\begin{aligned}& n \cdot p \cdot (1 - p)\\ & \approx(10^{9}) \times (4.59 \times 10^{-6}) \times (1- 4.59 \times 10^{-6})\\ &\approx 4.59 \times 10^{-6}\end{aligned}[/tex].

lim ₓ→∞ (x+4/x-1)∧x+4​

Answers

It looks like the limit you want to find is

[tex]\displaystyle \lim_{x\to\infty} \left(\frac{x+4}{x-1}\right)^{x+4}[/tex]

One way to compute this limit relies only on the definition of the constant e and some basic properties of limits. In particular,

[tex]e = \displaystyle\lim_{x\to\infty}\left(1+\frac1x\right)^x[/tex]

The idea is to recast the given limit to make it resemble this definition. The definition contains a fraction with x as its denominator. If we expand the fraction in the given limand, we have a denominator of x - 1. So we rewrite everything in terms of x - 1 :

[tex]\left(\dfrac{x+4}{x-1}\right)^{x+4} = \left(\dfrac{x-1+5}{x-1}\right)^{x-1+5} \\\\ = \left(1+\dfrac5{x-1}\right)^{x-1+5} \\\\ =\left(1+\dfrac5{x-1}\right)^{x-1} \times \left(1+\dfrac5{x-1}\right)^5[/tex]

Now in the first term of this product, we substitute y = (x - 1)/5 :

[tex]\left(\dfrac{x+4}{x-1}\right)^{x+4} = \left(1+\dfrac1y\right)^{5y} \times \left(1+\dfrac5{x-1}\right)^5[/tex]

Then use a property of exponentiation to write this as

[tex]\left(\dfrac{x+4}{x-1}\right)^{x+4} = \left(\left(1+\dfrac1y\right)^y\right)^5 \times \left(1+\dfrac5{x-1}\right)^5[/tex]

In terms of end behavior, (x - 1)/5 and x behave the same way because they both approach ∞ at a proportional rate, so we can essentially y with x. Then by applying some limit properties, we have

[tex]\displaystyle \lim_{x\to\infty} \left(\frac{x+4}{x-1}\right)^{x+4} = \lim_{x\to\infty} \left(\left(1+\dfrac1x\right)^x\right)^5 \times \left(1+\dfrac5{x-1}\right)^5 \\\\ = \lim_{x\to\infty}\left(\left(1+\dfrac1x\right)^x\right)^5 \times \lim_{x\to\infty}\left(1+\dfrac5{x-1}\right)^5 \\\\ =\left(\lim_{x\to\infty}\left(1+\dfrac1x\right)^x\right)^5 \times \left(\lim_{x\to\infty}\left(1+\dfrac5{x-1}\right)\right)^5[/tex]

By definition, the first limit is e and the second limit is 1, so that

[tex]\displaystyle \lim_{x\to\infty} \left(\frac{x+4}{x-1}\right)^{x+4} = e^5\times1^5 = \boxed{e^5}[/tex]

You can also use L'Hopital's rule to compute it. Evaluating the limit "directly" at infinity results in the indeterminate form [tex]1^\infty[/tex].

Rewrite

[tex]\left(\dfrac{x+4}{x-1}\right)^{x+4} = \exp\left((x+4)\ln\dfrac{x+4}{x-1}\right)[/tex]

so that

[tex]\displaystyle \lim_{x\to\infty} \left(\frac{x+4}{x-1}\right)^{x+4} = \lim_{x\to\infty}\exp\left((x+4)\ln\dfrac{x+4}{x-1}\right) \\\\ = \exp\left(\lim_{x\to\infty}(x+4)\ln\dfrac{x+4}{x-1}\right) \\\\ =\exp\left(\lim_{x\to\infty}\frac{\ln\dfrac{x+4}{x-1}}{\dfrac1{x+4}}\right)[/tex]

and now evaluating "directly" at infinity gives the indeterminate form 0/0, making the limit ready for L'Hopital's rule.

We have

[tex]\dfrac{\mathrm d}{\mathrm dx}\left[\ln\dfrac{x+4}{x-1}\right] = -\dfrac5{(x-1)^2}\times\dfrac{1}{\frac{x+4}{x-1}} = -\dfrac5{(x-1)(x+4)}[/tex]

[tex]\dfrac{\mathrm d}{\mathrm dx}\left[\dfrac1{x+4}\right]=-\dfrac1{(x+4)^2}[/tex]

and so

[tex]\displaystyle \exp\left(\lim_{x\to\infty}\frac{\ln\dfrac{x+4}{x-1}}{\dfrac1{x+4}}\right) = \exp\left(\lim_{x\to\infty}\frac{-\dfrac5{(x-1)(x+4)}}{-\dfrac1{(x+4)^2}}\right) \\\\ = \exp\left(5\lim_{x\to\infty}\frac{x+4}{x-1}\right) \\\\ = \exp(5) = \boxed{e^5}[/tex]

Which of the following behaviors would best describe someone who is listening and paying attention? a) Leaning toward the speaker O b) Interrupting the speaker to share their opinion c) Avoiding eye contact d) Asking questions to make sure they understand what's being said

Answers

The answer is A and D

good luck

What is the area of this triangle?
Enter your answer in the box.
units2

Answers

Answer:

8 units^2

Step-by-step explanation:

The area of a tringle is 1/2 bh. The base, LK, measures 4 while the height is also 4(you can get these values by counting the squares). This means the area is:

1/2 * (4)(4) = 1/2 * 16 = 8 units^2

how long does it take for a deposit of $900 to double at 2% compounded continuously?
how many years does it take to double ? ___ years __ days

Answers

9514 1404 393

Answer:

34.6574 years34 years, 239.94 days

Step-by-step explanation:

For continuous compounding the "rule of 69" applies. That is the doubling time can be found from ...

  t = 69.3147/r . . . . where r is the interest rate in percent.

Here, r=2, so ...

  t = 69.3147/2 = 34.6574 . . . years

That's 34 years and 240 days.

Which points lie on the graph of f(x) = loggx?
Check all that apply.

Answers

Step-by-step explanation:

f(x)=log(x)

     =d(log(x)/dx)

=>y=1/x

Which number line represents the solutions to 1-2x = 4?

Answers

Answer:

The third choice down

Step-by-step explanation:

|-2x| = 4

There are two solutions, one positive and one negative

-2x = 4  and -2x = -4

Divide by -2

-2x/-2 = 4/-2    -2x/-2 = -4/-2

x = -2   and x = 2

What is the equation of a line that passes through the point (1,8) and is perpendicular to the line whose equation is y=x/2+3?

Answers

Answer:

m=1/2

y-8=1/2(x-1)

y-8=1/2x-1/2

multiply through by 2

2y-16=x-1

2y-16+1-x=0

2y-15-x=0

2y-x-15=0

I NEED HELP THANK YOU!!

Answers

Answer:

rt3/2

Step-by-step explanation:

first off cosine is the x coordinate

now if you do't want to use a calculator, you can use use the unit circle.

360 - 330 = 30 (360 degrees is a whole circle)

a 30 60 90 triangle is made, then use the law for 30 60 90 triangles:

if the shortest leg is x, the other leg is x*rt3 and the hypotenuse is 2x.

Answer:

D

Step-by-step explanation:

cos 330 = cos (360-330)

= cos 30

= √3 /2

Other Questions
The cell membrane regulates what enters and leaves the cell, only allowingcertain things to enter or exit. This is called:A:Selective PermabilityB:Homeostasis C:OsmosisD:Transport To earn money on your investments the rate of return must be higher than the Select whether each equation has no solution, one solution, or infinitely many solutions. No Solution One Solution Infinitely Many Solutions 7x + 14 = 14 x + 7 5 x + 8 = 8 + 5 x 9x = 9 x + 5 17. if 2x + 1=7 what is the value of x Martina got a prepaid debit card with $20 on it. For her first purchase with the card, she bought some bulk ribbon at a craft store. The price of the ribbon was 19 cents per yard. If after that purchase there was $15.63 left on the card, how many yards of ribbon did Martina buy? In the beginning, the independence movement in Mexico was led primarily by:A) indios and MestizosB) peninsularesC) creolesD) slaves Chac MoolInferir Luego de adquirir la estatua, Filiberto decide reorganizar su cuarto de trofeos para colocarla all. Qu crees que simboliza esto?Enfoque en el estilo Desde que el Chac Mool est en el stano, Filiberto slo tiene problemas. Qu recursos usa el autor para que nos demos cuenta de la desesperacin de Filiberto? The training effect, in which individuals experience improvements in physical fitness as they continue a regular exercise regimen, is a product of All of the choices are correct. increased number of mitochondria in muscle cells. increased number of capillaries in muscles. increased efficiency of the heart. 1. I ________ yoga. Is it interesting?A. never have done B. ve never done C. ve done never2. Have you ever ridden an elephant? _______A. Yes, I have. B. Yes, I did. C. Yes, I ride.3. ________ to a music festival?A. Have you ever been B. Have you ever gone C. Have you ever seen4. I ________ dinner for more than ten people.A. cook B. have cooked C. cooked5. Peter ________ on holiday three times this year.A. was B. have been C. has been6. I ________the report yet.A. hasnt completed B. have not completed C. completed7. Mary ________ a foreign language.A. has never learnt B. hasnt never learnt C. has learnt never8.We ________ Japanese food yet. Is it good?A. tried B. havent tried C. have tried Q/29304199Surreyoffer Which event convinced American leaders to call the Grand Convention? A boy's song summary and analysis formula for calculating weekly salary from yearly salary? please help me with this question. Give the formula of each coordination compound. Include square brackets around the coordination complex. Do not include the oxidation state on the metal. Use parentheses only around polyatomic ligands.a) potassium tetracyanonickelate(II)b) sodium diamminedicarbonatoruthenate(III)c) diamminedichloroplatinum(II) find the missing side. Round it to the nearest tenth. A converging lens is used to focus light from a small bulb onto a book. The lens has a focal length of 10.0 cm and is located 40.0 cm from the book. Determine the distance from the lens to the light bulb. 3. A rectangular sheet of paper is 121/2 cm long and 102/3 cm wide. Find its perimeter . Please write this out in Spanish for me!You met two new friends from two different countries. You write a text to your best friend to let him know the nationalities of your two new friends. Write two (2) complete sentences in Spanish, describing the nationalities of your two new friends. Remember to use the vocabulary words and nationalities from this lesson/course only. Use the following suggestions as a guide for your answer:Include the following details in your text/description:In one complete sentence, write the nationality of your first new friend. Remember to use the correct form of the verb ser. In one complete sentence, write the nationality of your second new friend. Remember to use the correct form of the verb ser. For the reaction 2HNO3 + Mg(OH)2 + Mg(NO3)2 + 2H20, how manygrams of magnesium nitrate are produced from 3.54 mol of nitricacid, HNO3?O a. 220O b. 263O c. 1050O d. 175