Answer:
[tex]{ \sf{ - 2 {a}^{5} + 4 {a}^{4} + 5 {a}^{3} + \frac{2}{3}a }}[/tex]
Answer:
D
Step-by-step explanation:
A polynomial is in standard equation when the degree of the polynomial are in descending order.
Answer with explanation
Answer: a and d
Step-by-step explanation:
(to find all points of discontinuity, set denominator equal to zero and solve)
[tex]x^2-7x+10=0\\\\[/tex]
(to factor, find two numbers when added together equal -7 and when multiplied together equal 10)
-2 + -5 = -7
-2(-5) = 10
-2 and -5 are the two numbers
[tex](x-2)(x-5)=0\\\\x-2=0\\x=2\\\\x-5=0\\x=5\\\\x=2,5[/tex]
56 = h/9
k/5 - 10 = 3
3t + 5 =2
Answer:
h = 504, k = 65, t = -1
Step-by-step explanation:
56 = h/9
h = 56 x 9
h = 504
k/5 - 10 = 3
k/5 = 3 + 10
k/5 = 13
k = 13 x 5
k = 65
3t + 5 = 2
3t = 2 - 5
3t = -3
t = -3/3
t = -1
simplify : 5y-2y+4=10
Answer:
[tex]3y = 6,=> y=2[/tex]
Step-by-step explanai
on:
Which expression is equivalent to 1/4y−1/2?
( ignore the highlighted answer i don’t know if it’s right or not)
Answer:
1/4( y -2)
Step-by-step explanation:
1/4 y -1/2
Rewriting
1/4 * 1 y - 1/4*2
Factor out the 1/4
1/4( y -2)
What is the volume of the rectangular prism?
Answer:
94.5 yd^3
Step-by-step explanation:
The volume of a rectangular prism is given by the formula:
A = lwh
Where:
l = length
w = width
h = height
Volume is how much space a 3d figure occupies.
USE THE FORMULA WITH THE GIVEN DIMENSIONS:
A = (7)(4.5)(3)
= (31.5)(3)
= 94.5
Volume is measured in cubic yards, in this case.
Therefore your answer is 94.5 yd^3
I hope I helped!
Answer:
Step-by-step explanation:
length = 7 yd
Width = 4.5 yd
height = 3 yd
Volume of rectangular prism = length * width * height
= 7 * 4.5 * 3 = 94.5 yd³
What’s the sum in the diagram, a + b + c =
Answer:
Answer is 360 degrees
Step-by-step explanation:
The sum of the exterior angles of a triangle is 360°.
Answer: 360 degrees
Step-by-step explanation:
You know that in a triangle is 180 degrees. In the diagram, the figure shows a, b, and c, outside of the triangle. Also, the a, b, and c makes a circle. The circle is 360 degrees, so when you add a, b, and c that will equal 360.
(4y¹²) (3y)
Please help me
Solve for n. 1/ n-4 - 2/n = 3/ 4 - n
Answer:
The answer is n = - 4.. I hope it will help :)
8. Colleen times her morning commute such that there is an equal likelihood that she will arrive early or late to work on any given day. If she always arrives either early or late, what is the probability that Colleen will arrive late to work no more than twice during a five-day workweek
Solution :
Case I :
If Collen is late on [tex]0[/tex] out of [tex]5[/tex] days.
[tex]$= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} $[/tex]
[tex]$=\frac{1}{32}[/tex]
Case II :
When Collen is late on [tex]1[/tex] out of [tex]5[/tex] days.
[tex]$= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times ^5C_1$[/tex]
[tex]$=\frac{1}{32} \times 5$[/tex]
[tex]$=\frac{5}{32}[/tex]
Case III :
When Collen was late on [tex]2[/tex] out of [tex]5[/tex] days.
[tex]$= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times ^5C_2$[/tex]
[tex]$=\frac{1}{32} \times 10$[/tex]
[tex]$=\frac{5}{16}[/tex]
Therefore, the [tex]\text{probability}[/tex] that Collen will arrive late to work no more than [tex]\text{twice}[/tex] during a [tex]\text{five day workweek}[/tex] is :
[tex]$=\frac{1}{32} + \frac{5}{32} + \frac{5}{16} $[/tex]
[tex]$=\frac{1}{2}$[/tex]
A man walks at the rate of 88 paces to the minute if the average length of his paces is 0.875m, find the time take to walk 2.31km.
Answer:
30 minutes
Step-by-step explanation:
Walk rate = 88 paces/ minute
Average length of pace = 0.875 m
Time taken to walk 2.31 km ;
The distance in metres :
1000 m = 1 km
2.31 km = (1000 * 2.31) = 2310 m
Recall :
Time taken = distance / speed
Distance walked in a minute = 88 * 0.875 = 77 m
Time taken = 2310 / 77
Time taken = 30 minutes
Two neighbors in a rural area want to know the dsitance between their homes in miles what should the mneighbors us as a conversion factor to convert this distance to miles? 4,224 feet
They should use the conversion factor
1 mile = 5280 feet
To go from feet to miles, you divide by 5280
So,
4224 ft = 4224/5280 = 0.8 miles
The distance between their homes is exactly 0.8 miles
Find the area of the regular polygon. Round your answer to the nearest hundredth.
Answer:
Step-by-step explanation:
The central angle of a hexagon is 60 degrees. Drop a line from the center to the middle of the side marked 7.
Use the tan of the angle so formed (which is 30 degrees)
Tan(30)= opposite / height (which is the line you just drew).
Tan(30) = 3.5 / h
Tan(30) = 0.5774
Tan(30) = 3.5 / h multiply both sides by h
h*Tan(30) = 3.5 Divide by tan30
h = 3.5 / Tan(30)
h = 3.5 / 0.5774
h = 6.062
Now from both ends of the given side, draw 2 lines to the center. Find the area of that triangle.
Area of 1 triangle = 1/2 * b * h
area of 1 triangle = 1/2 * 7 * 6.062
Area of 1 triangle = 21.2176
There are 6 such triangles so multiply that number by 6
Answer: 6 * 21.2176
Answer: 127.31
could someone help me with these questions please i’m really confused
Answer:
C
Step-by-step explanation:
c
Step by step solution please
Answer:
I solved the question step by step in the pic, and I hope it helps
can you help me with this please.
Answer:
98 is the answer
Step-by-step explanation:
you add 8 each time
Answer:
a₁₃ = 98
Step-by-step explanation:
The nth term of an arithmetic sequence is
[tex]a_{n}[/tex] = a₁ + (n - 1)d
where a₁ is the first term and d the common difference
Here a₁ = 2 and d = a₂ - a₁ = 10 - 2 = 8 , then
a₁₃ = 2 + (12 × 8) = 2 + 96 = 98
Proof that :
[tex] {sin}^{2} \theta + {cos}^{2} \:\theta= 1[/tex]
Thx.
Answer:
Solution given:
Right angled triangle ABC is drawn where <C=[tex]\theta[/tex]
we know that
[tex]\displaystyle Sin\theta=\frac{opposite}{hypotenuse} =\frac{AB}{AC}[/tex]
[tex]\displaystyle Cos\theta=\frac{adjacent}{hypotenuse}=\frac{BC}{AC} [/tex]
Now
left hand side
[tex] \displaystyle {sin}^{2} \theta + {cos}^{2} \:\theta[/tex]
Substituting value
[tex](\frac{AB}{AC})²+(\frac{BC}{AC})²[/tex]
distributing power
[tex]\frac{AB²}{AC²}+\frac{BC²}{AC²}[/tex]
Taking L.C.M
[tex]\displaystyle \frac{AB²+BC²}{AC²}[/tex]....[I]
In ∆ABC By using Pythagoras law we get
[tex]\boxed{\green{\bold{Opposite²+adjacent²=hypotenuse²}}}[/tex]
AB²+BC²=AC²
Substituting value of AB²+BC² in equation [I]
we get
[tex]\displaystyle \frac{AC²}{AC²}[/tex]
=1
Right hand side
provedSOMEBODY HELP ME GET IT RIGHT IM ALREADY FAILING :( pls its Pythagorean theorem
Answer:
a = 8.7
Step-by-step explanation:
The Pythagorean theorem is
a^2+b^2 = c^2 where a and b are the legs and c is the hypotenuse
a^2+5^2 = 10^2
a^2 +25 = 100
a^2 = 100-25
a^2 = 75
Taking the square root of each side
sqrt(a^2) =sqrt(75)
a =8.660254038
Rounding to the nearest tenth
a = 8.7
if 2x +y=-7 and 3x=6+4y are simultaneous equation, what is the value of x-y
please answer this!!!
Answer:
A
Step-by-step explanation:
As the angles are equal, AB=BC, 16x-7=12x+1, 4x=8, x=2.
Please help!![tex]2^x=\sqrt{2}[/tex]
The amount of money Aria has in the bank after T years is determined by the equation A = 1,000 · 1.0512^T. After how many years will Aria have $2,000 in the bank?
(1) 12.9 (2) 13.9
(3) 14.9
(4) 15.9
Answer:
Step-by-step explanation:
You are given most of the equation that you need to solve. To find the number of years it will take to have 2000, sub in 2000 for A and solve:
[tex]2000=1000(1.0512)^t[/tex] and begin by dividing away the 1000 on both sides to get
[tex]2=(1.0512)^t[/tex] now we have to take the natural log of both sides:
[tex]ln(2)=ln(1.0512)^t[/tex]. Taking the natural log allows us to bring the t down out front:
ln(2) = t ln(1.0512) and now divide both sides by ln(1.0512):
[tex]\frac{ln(2)}{ln(1.0512)}=t[/tex] and do this on your calculator to get
t = 13.9 years
Answer:
T = 13.9
Step-by-step explanation:
A = 1,000 · 1.0512^T
Let A = 2000
2000 = 1,000 · 1.0512^T
Divide each side by 1000
2000/1000 = 1,000/1000 · 1.0512^T
2 = 1.0512^T
Take the log of each side
log 2 = log 1.0512^T
We know log a^b = b log a
log 2 = T log 1.0512
Divide each side by log 1.0512
log 2 / log 1.0512 = T
T=13.88172
Rounding to the nearest tenth
T = 13.9
Question 3 of 10
Which of the following is(are) the solution(s) to |15x+2| = 8?
Answer:
x = 6/5 x = -2
Step-by-step explanation:
|5x+2| = 8
There are 2 solutions
5x+2 = 8 and 5x+2 = -8
Subtract 2 from each side
5x+2 -2 = 8-2 and 5x+2-2 = -8-2
5x= 6 5x = -10
Divide by 5
5x/5 = 6/5 5x/5 = -10/5
x = 6/5 x = -2
Answer:
b
Step-by-step explanation:
|5x+2|=8
1) |5×(-2)+2|=8
|-10+2|=8
|-8|=8
8=8
2) |5×6/5+2|=8
|6+2|=8
|8|=8
8=8
Find the accumulated value of an investment of $10,000 for 7 years at an interest rate of 5.5% if the money is a. Compounded semiannually;b. Compounded quarterly; c. Compounded monthly; d. Compounded continuously
Answer:
Results are below.
Step-by-step explanation:
Giving the following information:
Annual interest rate (i)= 0.055
Initial investment (PV)= $10,000
Number of years (n)= 7
To calculate the future value (FV), we need to use the following formula (except in d):
FV= PV*(1+i)^n
a.
Semiannual interest rate= 0.055/2= 0.0275
Number of semesters= 7*2= 14
FV= 10,000*(1.0275^14)
FV= $14,619.94
b.
Quarterly rate= 0.055/4= 0.01375
Number of quarters= 7*4= 28
FV= 10,000*(1.01375^28)
FV= $14,657.65
c.
Monthly interest rate= 0.055/12= 0.0045833
Number of months= 7*12= 84
FV= 10,000*(1.0045833^84)
FV= $14,683.18
d.
To calculate the future value using continuous compounding, we need to use the following formula:
FV= PV*e^(n*i)
FV= 10,000*e^(7*0.055)
FV= $14,696.14
What is the remainder when 4x2 - 2x + 6 is divided by x - 2?
Answer:
18
Step-by-step explanation:
Find the zeros of the divisor
x-2=0
x=2
Plug 2 into the polynomial
4(2)²-2(2)+6
=16-4+6
=18
Thank you so much thank y’all
Given that 3=a+r/a-r,make r the subject of the formula?
i- dont know...sorry
evaluate without multiplying directly 998³ x 103³
Answer correctly I will mark them as brainlist
Answer:
1,086,183,741,982,184
Step-by-step explanation:
998^3
= (1,000)^3 - (2)^3 - 3 · 1,000 · 2 (1000 - 2)
= 1,000,000,000 - 8 - 6,000 (998)
= 999,999,992 - 5,988,000
= 994,011,992
103^3
= (100 + 3)^3
= (100)^3 + (3)^3 + 3(100) (3) + (100+3)
= 1,000,000 + 27 + 900(103)
= 1,000,027 + 92,700
= 1,092,727
994,011,992 · 1,092,727
= 994,011,992 · (1,000,000 + 90,000 + 2,000 + 700 + 20 + 7)
= (994,011,992 · 1,000,000) + (994,011,992 · 90,000) + (994,011,992 · 2,000) + (994,011,992 · 700) + (994,011,992 · 20) + (994,011,992 · 7)
= 994,011,992,000,000 + 89,461,079,280,000 + 1,988,023,984,000 + 695,808,394,400 + 19,880,239,840 + 6,958,083,944
= 1,086,183,741,982,184
how many cups are in one liter?
Which conversions show a path to the solution? Check all that apply.
A. cups -> liters -> quarts
B. liters -> quarts -> cups
C. cups -> gallons -> liters
D. liters -> gallons -> cups
Answer:
b,d
Step-by-step explanation:
1. Paulina wants to find the width, AB, of a river. She walks along the edge of the river 200 ft and marks point C. Then she walks 60 ft further and marks point D. She turns 90° and walks until her location, point A, and point C are collinear. She marks point E at this location, as shown. (a) Can Paulina conclude that ΔABC and ΔEDC are similar? Why or why not? (b) Suppose DE = 40 ft. Calculate the width of the river, AB. Show all your work and round answer to the nearest tenth. Answer
Answer:
Step-by-step explanation:
a). In ΔABC and ΔEDC,
Since, AB and DE are parallel and AE is a transversal,
Therefore, ∠CAB ≅ ∠CED [Alternate interior angles]
m∠D = m∠B = 90°
ΔABC ~ ΔEDC [By AA property of similarity of two triangles]
b). Therefore, by the property of similar triangles,
"Corresponding sides of two similar triangles are proportional"
[tex]\frac{DC}{BC}= \frac{DE}{AB}[/tex]
[tex]\frac{60}{200}=\frac{40}{AB}[/tex]
AB = [tex]\frac{40\times 200}{60}[/tex]
= 133.33
≈ 133.3 ft
what is the perimeter
A) 20.3
B)18.3
C)24.3
D)22.3
Answer:
b
Step-by-step explanation:
cuz u add them all