Answer:
The answer is A
Explanation:
The octopus’s tentacle keeps moving right after it is bitten off
Please write a paragraph explaining the bible verse below in your own words.
Exodus 16:19-20
Answer:
Moses had told them to not keep the food till morning but some kept some anyways because they probably thought they were going to starve or not have food the next morning but what I think it means is that you have to trust in God that he will provide for you and so when the people kept the food cuz he thought they were probably going to start of the next day it got maggots
Astone has a mass of 200 grams. When it is immersed in a measuring cylinder of water,the water rises 100 ml.What is the density of the stone
Answer:
2 g/mLExplanation:
The density of a substance can be found by using the formula
[tex]d = \frac{m}{v} \\ [/tex]
m is the mass
v is the volume
From the question
m = 200g
v = 100 mL
We have
[tex]d = \frac{200}{100} = 2 \\ [/tex]
We have the final answer as
2 g/mLHope this helps you
If work stays the same and the distance is increased, then less force is needed to do the work.
True
False
Answer:
False
Explanation:
This is because the work is the same so the force won't change
A phone cord is 2.28 m long. The cord has a mass of 0.2 kg. A transverse wave pulse is produced by plucking one end of the taut cord. The pulse makes four trips down and back along the cord in 0.849 s. What is the tension in the cord?
The characteristics of the speed of the traveling waves allows to find the result for the tension in the string is:
T = 10 N
The speed of a wave on a string is given by the relationship.
v =[tex]\sqrt{\frac{T}{\mu } }[/tex]
Where v es the velocty, t is the tension ang μ is the lineal density.
They indicate that the length of the string is L = 2.28 m and the pulse makes 4 trips in a time of t = 0.849 s, since the speed of the pulse in the string is constant, we can use the uniform motion ratio, where the distance traveled e 4 L
v = [tex]\frac{d}{t}[/tex]
v = [tex]\frac{4 L}{t}[/tex]
v = [tex]\frac{4 \ 2.28 }{0.849}[/tex]
v = 10.7 m / s
Let's find the linear density of the string, which is the length of the mass divided by its mass.
μ = [tex]\frac{m}{L}[/tex]
[tex]\mu = \frac{0.2}{2.28}[/tex]
μ = 8.77 10⁻² kg / m
The tension is:
T = v² μ
Let's calculate
T = 10.7² 8.77 10⁻²
T = 1 0 N
In conclusion using the characteristics of the velocity of the traveling waves we can find the result for the tension in the string is:
T = 10 N
Learn more here: https://brainly.com/question/12545155
¿Por qué el origen de ciertos metales se relaciona con la dinámica terrestre?
What will be the speed of these waves (in terms of V) if we increase M by a factor of 18.0, which stretches the wire to double its original length
The speed of the chord wave allows finding a new speed when the mass is increased and the chord length is:
The velocity is: v = [tex]\frac{v_o}{3}[/tex]
A wave is a periodic movement of the particles that carries energy, but not matter, the speed of the waves is related to the properties of the medium by the relationship.
[tex]v = \sqrt{\frac{T}{\mu } }[/tex]
Where v is the speed of the wave, T the force and μ is the linear density.
Indicates that the applied mass increases by a factor of 18.0 and the length of the head is increased to twice the original.
The linear density of the cable is
[tex]\mu = \frac{m}{l}[/tex]
Where m is the mass of the cable and l is the length.
Let's use the subscript "o" for the initial conditions.
M = 18.0 m₀
l = 2 l₀
We look for the density.
[tex]\mu = \frac{18.0 m_o}{2.0 l_o}[/tex]mu = 18.0 mo / 2 lo
[tex]\mu = 9.0 \mu_o[/tex]
We substitute in the expression for the velocity assuming that the tension is kept constant.
[tex]v= \sqrt{\frac{T}{9.0 \mu} }[/tex]
[tex]v= \frac{v_o}{3}[/tex]
In conclusion, using the speed of the chord wave we can find a new speed when the mass is increased and the chord length is:
The velocity is: v = [tex]\frac{v_o}{3}[/tex]
Learn more about wave speed here: brainly.com/question/16824509
A person of mass 70 kg stands 0.5 m from one end of a 2 m long uniform plank (of negligible mass) that is
being held in equilibrium by two vertical ropes attached to the ends of the plank. What is the tension in the
rope closer to the person?
Help
Hi there!
We can begin by using a summation of torques, with the fulcrum being at the rope farthest from the person (the other end).
Thus:
F1 = weight of person
R1 = distance of person to fulcrum (farther end)
F2 = Tension of rope closest to person
R2 = distance of rope to fulcrum
∑τ = 0 = R2F2 - R1F1
R2F2 = R1F1
Plug in values:
2F2 = 1.5(700N)
2F2 = 1050 N
F2 = 525 N = Tension of closest rope
An electromagnet does not attract a piece of iron.Is it true ? Give reason
Answer:
False..
Explanation:
An electoMagnets attract iron due to the influence of their magnetic field upon the iron. ...
A Vector that starts from
Origin is called what?
E5. A ball is thrown downward with an initial velocity of 12 m/s.
Using the approximate value of g 10 m/s2, what is the
velocity of the ball 1.0 seconds after it is released?
Hi there!
We know the following kinematic equation:
vf = vi + at
Where:
vf = final velocity
vi = initial velocity
a = acceleration
t = time
In this instance, the ball is experiencing a constant acceleration of that of gravity, thus:
vf = 12 + 10(1) = 22 m/s (if downward is considered positive in this instance)
10. What is Newton's 3rd Law?
O A. For every action there is an equal and opposite reaction.
B. Acceleration depends on two variables, the mass of the object and the amount of
force.
C. An object at rest will stay at rest, an object in motion will stay in motion, unless an
unbalanced force acts upon it.
D. The amount of matter in an object.
7. What is Newton's 2nd Law? *
Answer:
A. For every action there is an equal and opposite reaction.
I will mark brainlist
If a wave’s amplitude is 2cm, then its height is equal to:
5 cm.
0 cm
4 cm.
2 cm
Answer:
4 cm
Explanation:
Amplitude is the measure from the MIDLINE to the peak of the wave....so the wave HEIGHT is twice the ampltude
2 x 2 cm = 4 cm
Help please..
Kepler’s third law states that:
A. the orbits of the planets are elliptical.
B. the planets move slower when they are closer to the Sun and faster when they are farther from the Sun.
C. the square of the ratio of the periods of any two planets revolving around the Sun is equal to the cube of the ratio of their average distance from the Sun.
D. objects attract other objects with a force that is directly proportional to the product of their masses, and inversely proportional to the square of the distance between them.
Answer:
c
Explanation:
Is acceleration included in a force diagram? Why?
Answer:
No
Explanation:
Acceleration is not a "Force"
The only things added on a force diagrams are forces that are acting on the object. Force causes acceleration to change but it is not a force itself and is not included on a force diagram.
Balance the following chemical equation:
CO2 + VH20 - CH1206+ voz
[
~
CO₂+
Answer:
Explanation:
Start with Carbon and assume we only get 1 sugar molecule from the process.
you have 6 carbons in the sugar on the right, so you need 6 carbons on the left which only come from CO₂
6 CO₂
you have 12 hydrogen atoms in the sugar on the right, so you need 12 hydrogen atoms on the left which only come from H₂O. At 2 hydrogen atoms per water molecule means you need 6 waters.
6 CO₂ + 6 H₂O → 1 C₆H₁₂O₆
you are supplied with 12 oxygen from the CO₂ and 6 oxygen from the H₂O, but you only need 6 oxygen for the sugar. That means there are 12 oxygen remaining which will become 6 O₂ molecules
6 CO₂ + 6 H₂O → 1 C₆H₁₂O₆ + 6 O₂
The coefficient of kinetic friction for a 22 kg bobsled on a track is 0.10. What force is required to push it down a 5.0 degree incline and achieve a speed of 62 km/h at the end of 75 m
Hi there!
We must begin by converting km/h to m/s using dimensional analysis:
[tex]\frac{62km}{1hr} * \frac{1hr}{3600sec}*\frac{1000m}{1km} = 17.22 m/s[/tex]
Now, we can use the kinematic equation below to find the required acceleration:
vf² = vi² + 2ad
We can assume the object starts from rest, so:
vf² = 2ad
(17.22)²/(2 · 75) = a
a = 1.978 m/s²
Now, we can begin looking at forces.
For an object moving down a ramp experiencing friction and an applied force, we have the forces:
Fκ = μMgcosθ = Force due to kinetic friction
Mgsinθ = Force due to gravity
A = Applied Force
We can write out the summation. Let down the incline be positive.
ΣF = A + Mgsinθ - μMgcosθ
Or:
ma = A + Mgsinθ - μMgcosθ
We can plug in the given values:
22(1.978) = A + 22(9.8sin(5)) - 0.10(22 · 9.8cos(5))
A = 46.203 N
2. An auditorium has 58 seats in the first row, 62 seats in the second row, 66 seats in the third row, and so
on.
a)Find the explicit formula of this arithmetic sequence.
B) find the number of seats in the twentieth row.
Which strategy should you use if your research question is too broad for the scope of your project? (1 O narrow the focus of research question o add another research question o use the very first source you find for your project O change the scope of your project
Answer:
"Narrow the focus of research question"
Explanation:
O Narrow the focus of research question
This is good! You can still use your question, but focus in on something so you have a proper research project.
O Add another research question
Would adding another question to an already broad question help? No.
O Use the very first source you find for your project
If your question is too broad, you should not use whatever you see first as it may be incorrect or does not answer the question
O Change the scope of your project
You could, but if you have a set scope for your project (a) you might not be able to change it (b) you don't need to restart
Have a nice day!
I hope this is what you are looking for, but if not - comment! I will edit and update my answer accordingly. (ノ^∇^)
- Heather
The less dense areas created as a sound wave propagates are called
A. rarefactions✅
B. troughs
C. crests
D. compressions
Answer:
C. crests
don't trust me though
Answer:
The less dense areas created as a sound wave propagates are called rarefactions.
Explanation:
Hoped this helped.
A motorcycle moves according to the velocity-time graph
shown in Figure 3.28. Find the average acceleration of
the motorcycle during each of the following segments of
the motion: (a) A, (b) B, and (c) C.
Answer:
a) 1 m/s²
b) -1 m/s²
c) 0 m/s² (constant speed, not accelerating)
Explanation:
A
delta speed = 10 - 0
delta time = 10 - 0
delta speed / delta time = 10/10
delta speed / delta time = 1
B
ds = 5 - 10
dt = 15 - 10
ds / dt = -5 / 5
ds / dt = -1
C
ds = 5 - 5
dt = 25 - 15
ds / dt = 0 / 10
ds / dt = 0
The average acceleration of A, B, and C will be 1 m/s², -1 m/s², and 0 m/s².
What is acceleration?An object is considered to have been accelerated if its velocity changes. Depending on whether an object is moving faster, slower, or in a different direction, its velocity may change. Examples of acceleration include a falling apple, the moon orbiting the earth, and a car that has stopped at a stop sign. These examples demonstrate how acceleration occurs whenever a moving object modifies its direction, speed, or both.
There are different types of acceleration :
Uniform accelerationNon-Uniform AccelerationAverage accelerationAverage acceleration is defined as the average change in velocity with respect to the average change in time.
SI unit is m/s² and it is vector quantity.
According to the question,
For A, Acceleration= (v₁-v₀)/(t₁-t₀)
⇒10-0/10-0
= 1 m/s².
For B, Acceleration= (v₃-v₂)/(t₃-t₂)
⇒5-10/15-10
= -1 m/s²
For C, Acceleration will be constant because change in velocity is constant, this is the case of uniform motion, so its acceleration is also going to be constant (as per the definition of acceleration change in velocity ratio change in time).
For more information about acceleration :
https://brainly.com/question/12550364
#SPJ2
Kinesha and her friend were watching a solar eclipse. Kinesha explains to her friend that a solar eclipse means that Earth is located between the Sun and the Moon. Her friend tells Kinesha that her explanation is incorrect. Why?
this is where the sun and moon line up where you asleep only a tiny bit of the sun it's pretty cool to see
Explanation:
a solar eclipse means when the moon goes infront of the sun and the earth turns dark
*graph is below*
1. What is Peter’s total distance traveled? What is Peter's displacement?
2. Is there a time when Peter is not moving? If so, when?
The total distance covered is 24 Km and Peter was not moving between the points marked 10 mins and 30 mins on the graph. His displacement according to the graph is zero.
The distance time graph shows the distance covered plotted on the vertical axis against the time taken plotted on the horizontal axis. Using this graph, the total distance covered can easily be obtained.
The total distance covered is 12 km + 12 km since equal distance was covered to and fro. Hence the total distance covered is 24 km. Perter was not moving between the points marked 10 mins and 30 mins on the graph.
Learn more: https://brainly.com/question/8646601
4. Your group used an object with fixed mass (heavy or light). How will the results be different
for an object with a different mass?
There is a uniform magnetic field of magnitude B, pervading all space, perpendicular to the plane of rod and rails. The rod is released from rest, and it is observed that it accelerates to the left. In what direction does the magnetic field point?
The right hand rule to find the direction of the magnetic field for a falling bar is:
The charge is positive the magnetic field is outgoing, horizontally and towards us. The charge of the bar is negative, the magnetic field is incoming, that is horizontal away from us.
The magnetic force is given by the vector product of the velocity and the magnetic field.
F = q v x B
Where the bolds indicate vectors, F is the force, q the charge on the particle, v the velocity and B the magnetic field.
In the vector product, the vectors are perpendicular, which is why the right-hand rule has been established, see attached:
The thumb points in the direction of speed. Fingers extended in the direction of the magnetic field. The palm is in the direction of the force if the charge is positive and in the opposite direction if the charge is negative.
They indicate that the bar is dropped, therefore its speed is vertical and downwards, it moves to the left therefore this is the direction of the force, we use the right hand rule, the magnetic field must be horizontal, we have two possibilities:
If the charge is positive the magnetic field is outgoing, horizontally and towards us. If the charge of the bar is negative, the magnetic field is incoming, that is, horizontal away from us
In conclusion using the right hand rule we can find the direction of the magnetic field for a falling bar is:
The charge of the bar is negative, the magnetic field is incoming, that is horizontal away from us.The charge is positive the magnetic field is outgoing, horizontally and towards us.
Learn more about the right hand rule here: brainly.com/question/12847190
Pls help, I really need it and plz show steps I will give brainliest..
Answer:
21.31 meters
Explanation:
Since we're working with gravitational potential energy (GPE):
GPE (Joules) = mass (kg) * gravity (m/s^2) * height (meters)
1. Figure out what we have:
GPE = mass * gravity * height
We're looking for height, and we have the other three, so we're set to move on.
2. Isolate the unknown variable (height):
(GPE) / (mass * gravity) = height
3. Plug in your numbers:
(3.78 * 10^7 J) / ((1.81 * 10^5 kg) * (9.8 m/s^2)) = 21.31 meters
why is cooking faster with a pressure cooker. plz help me I beg
Explanation:
The same thing happened in pressure cooker but the temperature inside is most higher.
hope you like my answer
thank you
Because cooking reactions speed up at a higher temperature also the boiling temperature of water increases and hence, the food cooks faster.
source:
https://www.vedantu.com/question-answer/a-pressure-cooker-reduces-cooking-time-for-food-class-9-chemistry-cbse-5feaba32e9fb3d3419e4a61a
A racecar can be slowed with a constant acceleration of -14 m/s2. If the car is going 75 m/s, how many meters will take to stop?
Answer:
Explanation:
v² = u² + 2as
s = (v² - u²)/2a
s = (0² - 75²) / (2(-14))
s = 200.8928
s = 200 m
Answer:
Identification
Explanation:
:-;..........
At a distance of 1 cm from the source, the flux from the isotropic source is one hundred times brighter. Which source is brighter fifty centimeters away
Answer:
op
Explanation:
At a distance of 1 cm from the source, the flux from the isotropic source is one hundred times brighter. Which source is brighter fifty centimeters away
Work is required to lift a barbell. How many times more work is required to lift the barbell 2 times as high?
Answer:
2 times more work
Explanation:
Work is a force times distance
W = Fd
The barbell does not change mass so its weight (force) is constant.
That means work is directly proportional to the distance traveled.
twice the distance means twice the work.
Please help
A man stands on a freely rotating platform with his arms extended, his rotational frequency is 0.25rev/s. But when he draws them in, his frequency is 0.80revs/s. Find the ratio of his moment of inertia in the first case to that in the second.
Answer:
sorry for you
The ratio of the man's moment of inertia in the first case (arms extended) to that in the second case (arms drawn in) is 3.2.
The relationship between the rotational frequency [tex](\(\omega\))[/tex] and moment of inertia (I) is given by the equation:
[tex]\[I_1\omega_1 = I_2\omega_2\][/tex]
where [tex]\(I_1\)[/tex]and [tex]\(I_2\)[/tex] are the moments of inertia in the two cases, and [tex]\(\omega_1\) and \(\omega_2\)[/tex] are the corresponding rotational frequencies.
Let's denote the moment of inertia in the first case (arms extended) as [tex]\(I_1\)[/tex] and in the second case (arms drawn in) as [tex]\(I_2\)[/tex]. The given rotational frequencies are [tex]\(\omega_1 = 0.25 \, \text{rev/s}\) and \(\omega_2 = 0.80 \, \text{rev/s}\)[/tex].
Using the equation [tex]\(I_1\omega_1 = I_2\omega_2\)[/tex], we can rearrange it to solve for the ratio of moments of inertia:
[tex]\[\frac{I_1}{I_2} = \frac{\omega_2}{\omega_1}\][/tex]
Substituting the given values, we have:
[tex]\[\frac{I_1}{I_2} = \frac{0.80 \, \text{rev/s}}{0.25 \, \text{rev/s}}\][/tex]
Simplifying the expression, we get:
[tex]\[\frac{I_1}{I_2} = 3.2\][/tex]
Therefore, the ratio of the man's moment of inertia in the first case (arms extended) to that in the second case (arms drawn in) is 3.2.
know more about inertia:
https://brainly.com/question/3268780
#SPJ2