The resistors produced by a manufacturer are required to have an average resistance of 0.150 ohms. Statistical analysis of the output suggests that the resistances can be approximated by a normal distribution with known standard deviation of 0.005 ohms. We are interested in testing the hypothesis that the resistors conform to the specifications.

Requied:
a. Determine whether a random sample of 10 resistors yielding a sample mean of 0.152 ohms indicates that the resistors are conforming. Use alpha = 0.05.
b. Calculate a 95% confidence interval for the average resistance. How does this interval relate to your solution of part (a)?

Answers

Answer 1

Answer:

a) The p-value of the test is 0.2076 > 0.05, which means that the sample indicates that the resistors are conforming.

b) The 95% confidence interval for the average resistance is (0.147, 0.153). 0.152 is part of the confidence interval, which means that as the test statistic in item a), it indicates that the resistors are conforming.

Step-by-step explanation:

Question a:

The resistors produced by a manufacturer are required to have an average resistance of 0.150 ohms.

At the null hypothesis, we test if this is the average resistance, that is:

[tex]H_0: \mu = 0.15[/tex]

We are interested in testing the hypothesis that the resistors conform to the specifications.

At the alternative hypothesis, we test if it is not conforming, that is, the mean is different of 0.15, so:

[tex]H_1: \mu \neq 0.15[/tex]

The test statistic is:

[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.

0.15 is tested at the null hypothesis:

This means that [tex]\mu = 0.15[/tex]

Sample mean of 0.152, sample of 10, population standard deviation of 0.005.

This means that [tex]X = 0.152, n = 10, \sigma = 0.005[/tex]

Value of the test statistic:

[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

[tex]z = \frac{0.152 - 0.15}{\frac{0.005}{\sqrt{10}}}[/tex]

[tex]z = 1.26[/tex]

P-value of the test and decision:

The p-value of the test is the probability of the sample mean differing from 0.15 by at least 0.152 - 0.15 = 0.002, which is P(|z| > 1.26), given by two multiplied by the p-value of z = -1.26.

Looking at the z-table, z = -1.26 has a p-value of 0.1038.

2*0.1038 = 0.2076

The p-value of the test is 0.2076 > 0.05, which means that the sample indicates that the resistors are conforming.

Question b:

We have to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1 - 0.95}{2} = 0.025[/tex]

Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].

That is z with a p-value of [tex]1 - 0.025 = 0.975[/tex], so Z = 1.96.

Now, find the margin of error M as such

[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]

In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.

[tex]M = 1.96\frac{0.005}{\sqrt{10}} = 0.003[/tex]

The lower end of the interval is the sample mean subtracted by M. So it is 0.15 - 0.003 = 0.147.

The upper end of the interval is the sample mean added to M. So it is 0.15 + 0.003 = 0.153.

The 95% confidence interval for the average resistance is (0.147, 0.153). 0.152 is part of the confidence interval, which means that as the test statistic in item a), it indicates that the resistors are conforming.


Related Questions

Flying against the wind, an airplane travels 3360 kilometers in hours. Flying with the wind, the same plane travels 7560 kilometers in 9 hours. What is the rate of the plane in still air and what is the rate of the wind?

Answers

Answer:

606.6 and 233.3 respectively

Step-by-step explanation:

Let the speed of plane in still air be x and the speed of wind be y.

ATQ, (x+y)*9=7560 and (x-y)*9=3360. Solving it, we get x=606.6 and y=233.3

Move the numbers to the lines to order them from least to greatest.
least
greatest
67.98
68.6
68.11
Please answer ASAP

Answers

Answer:

67.98,68.11, 68.6

CAN SOMEBODY ANSWER MY QUESTIONS !!!!​

Answers

9514 1404 393

Answer:

A''(-1, 2)B''(3, 5)C''(4, 3)

Step-by-step explanation:

Reflection over the line x=a is the transformation ...

  (x, y) ⇒ (2a -x, y)

Then the double reflection over x=a and x=b is the transformation ...

  (x, y) ⇒ (2b -(2a -x), y) = (2(b-a) +x, y)

That is, the result is translation by twice the distance between the lines. For a=1 and b=3, the transformation is ...

  (x, y) ⇒ (x +4, y) . . . . . . . translation to the right by 4 units.

  A(-5, 2) ⇒ A''(-1, 2)

  B(-1, 5) ⇒ B''(3, 5)

  C(0, 3) ⇒ C''(4, 3)

A study was conducted to determine if there was a difference in the driving ability of students from West University and East University by sending a survey to a sample of 100 students at both universities. Of the 100 sampled from West University, 15 reported they were involved in a car accident within the past year. Of the 100 randomly sampled students from East University, 12 students reported they were involved in a car accident within the past year. True or False. The difference in driving abilities at the two universities is statistically significant at the .05 significance level.

Answers

Answer:

False

Step-by-step explanation:

Before testing the hypothesis, we need to understand the central limit theorem and subtraction of normal variables.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]

Subtraction between normal variables:

When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.

West University:

15 out of 100, so:

[tex]p_W = \frac{15}{100} = 0.15[/tex]

[tex]s_W = \sqrt{\frac{0.15*0.85}{100}} = 0.0357[/tex]

East University:

12 out of 100, so:

[tex]p_E = \frac{12}{100} = 0.12[/tex]

[tex]s_E = \sqrt{\frac{0.12*0.88}{100}} = 0.0325[/tex]

Test the difference in driving abilities at the two universities:

At the null hypothesis we test if there is no difference, that is, the subtraction of the proportions is 0, so:

[tex]H_0: p_W - p_E = 0[/tex]

At the alternative hypothesis, we test if there is a difference, that is, if the subtraction of the proportions is different of 0. So

[tex]H_1: p_W - p_E \neq 0[/tex]

The test statistic is:

[tex]z = \frac{X - \mu}{s}[/tex]

In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, and s is the standard error.

0 is tested at the null hypothesis:

This means that [tex]\mu = 0[/tex]

From the two samples:

[tex]X = p_W - p_E = 0.15 - 0.12 = 0.03[/tex]

[tex]s = \sqrt{s_W^2+s_E^2} = \sqrt{0.0357^2+0.0325^2} = 0.0483[/tex]

Value of the test statistic:

[tex]z = \frac{X - \mu}{s}[/tex]

[tex]z = \frac{0.03 - 0}{0.0483}[/tex]

[tex]z = 0.62[/tex]

P-value of the test and decision:

The p-value of the test is the probability that the proportions differ by at least 0.03, which is P(|z| > 0.62), that is, 2 multiplied by the p-value of z = -0.62.

Looking at the z-table, z = -0.62 has a p-value of 0.2676.

2*0.2676 = 0.5352.

The p-value of the test is 0.5352 > 0.05, which means that the difference in driving is not statistically significant at the .05 significance level, and thus the answer is False.

Which table represents a linear function

Answers

Answer:

3rd option (top right)

Step-by-step explanation:

3rd option represents a linear equation

y = -2x-1

Answered by GAUTHMATH


I need help answering this ASAP

Answers

Answer:

A the input x=3 goes to two different output values

Step-by-step explanation:

This is not a function

x = 3 goes to two different y values

x = 3 goes to t = 10 and y = 5

Find the remainder when f(x)=x3−4x2−6x−3 f ( x ) = x 3 − 4 x 2 − 6 x − 3 is divided by x+1

Answers

Answer:

The remainder is -2.

Step-by-step explanation:

According to the Polynomial Remainder Theorem, if we divide a polynomial P(x) by a binomial (x - a), then the remainder of the operation will be given by P(a).

Our polynomial is:

[tex]P(x) = x^3-4x^2-6x-3[/tex]

And we want to find the remainder when it's divided by the binomial:

[tex]x+1[/tex]

We can rewrite our divisor as (x - (-1)). Hence, a = -1.

Then by the PRT, the remainder will be:

[tex]\displaystyle\begin{aligned} R &= P(-1)\\ &=(-1)^3-4(-1)^2-6(-1)-3 \\ &= (-1)-4(1)+(6)-3 \\ &= -2 \end{aligned}[/tex]

The remainder is -2.

What is the value of |-6|—|6|-(-6)?

The solution is

Answers

Answer:

6

Step-by-step explanation:

|-6| = 6

|6| = 6

- -6 = +6

so, we have

6 - 6 + 6 = 6

Find the product and simplify your answer 6w(5w^2-5w+5)

Answers

Answer:

30w^3 - 30w^2 + 30w

Step-by-step explanation:

Basically multiply 6w by the numbers inside the parentheses

Points T, R, and P, define _____Points B, A, and E are:

Point A is located at (2, 4). Point B is located at (-2, 4). Point C is located at (-2, -4). Point D is located at (2, -4). Point E is located at (4, 4).

Answers

Answer:

Point T,R,P not seen how I don't understand your question.

question is in picture

Answers

Answer: A

Step-by-step explanation:

(tangent is opposite over adjacent)

[tex]tan(40)=\frac{x}{3.8}\\x=3.8*tan(40)[/tex]

PPPPPLLLLZZZZ HELPPPP
Use the function f(x) = -16x² + 60x + 16 to answer the questions.
Part A: Completely factor f(x). (2 points)
Part B: What are the x-intercepts of the graph of f(x)? Show your work. (2 points
Part C: Describe the end behavior of the graph of f(x). Explain. (2 points)
Part D: What are the steps you would use to graph f(x)? Justify that you can use the answers obtained in Part B and Part C to draw the graph

Answers

Here we have the quadratic function:

f(x) = -16*x^2 + 60*x + 16

We can see that it is in standard form:

y = a*x^2 + b*x + c

a) First we want to completely factorize the function f(x).

To do it, we first need to find the roots of f(x).

Remember that for a generic quadratic equation:

a*x^2 + b*x + c = 0

whit roots x₁ and x₂, the factorized form is:

a*(x - x₁)*(x - x₂)

And the roots are given by:

[tex]x = \frac{-b \pm \sqrt{b^2 - 4*a*c} }{2*a}[/tex]

Then for the case of f(x) = -16*x^2 + 60*x + 16, the roots are:

[tex]x = \frac{-60 \pm \sqrt{60^2 - 4*(-16)*16} }{2*(-16)} = \frac{-60 \pm 68}{-32}[/tex]

So the two roots are:

x₁ = (-60 + 68)/-32 = -0.25

x₂ = (-60 - 68)/-32 = 4

Then the factorized form is:

f(x) = -16*(x - 4)*(x + 0.25)

B) We already found the roots, which are:

x₁ =  -0.25

x₂ =  4

These are the x-intercepts:

(-0.25, 0) and (4, 0)

C) We can see that the leading coefficient is negative.

This means that the arms of the graph go downwards, so as |x| increases, the value of f(x) tends to negative infinity.

D) To graph f(x) we can find some of the points of the graph (like the x-intercepts and some more of them) and then connect them with a parabola curve, the graph that you will get is the one that you can see below.

If you want to learn more about this topic, you can read:

https://brainly.com/question/22761001

At a time hours after taking a tablet, the rate at which a drug is being eliminated r(t)= 50 (e^-01t - e^-0.20t)is mg/hr. Assuming that all the drug is eventually eliminated, calculate the original dose.

Answers

Answer:

2500 mg

Step-by-step explanation:

Since r(t) is the rate at which the drug is being eliminated, we integrate r(t) with t from 0 to ∞ to find the original dose of drug, m. Since all of the drug will be eliminated at time t = ∞.

Since r(t) =  50 (e^-01t - e^-0.20t)

m = ∫₀⁰⁰50 (e^-01t - e^-0.20t)

= 50∫₀⁰⁰(e^-01t - e^-0.20t)

= 50[∫₀⁰⁰e^-01t - ∫₀⁰⁰e^-0.20t]

= 50([e^-01t/-0.01]₀⁰⁰ - [e^-0.20t/-0.02]₀⁰⁰)

= 50(1/-0.01[e^-01(∞) - e^-01(0)] - {1/-0.02[e^-0.02(∞) - e^-0.02(0)]})

= 50(1/-0.01[e^-(∞) - e^-(0)] - {1/-0.02[e^-(∞) - e^-(0)]})

= 50(1/-0.01[0 - 1] - {1/-0.02[0 - 1]})

= 50(1/-0.01[- 1] - {1/-0.02[- 1]})

= 50(1/0.01 - 1/0.02)

= 50(100 - 50)

= 50(50)

= 2500 mg

If the product of a and cis negative, you subtract the factors of the product to arrive at c. True False​

Answers

9514 1404 393

Answer:

  false

Step-by-step explanation:

The statement is nonsense (false). Regardless of the sign of a product, subtraction plays no part in anything related to it.

I NEED HELP ON C,E,F,G PLEASE ASAP!!!!

Answers

Answer:
C. 364.4
E. 14
F. 21
G. 96°

Given coordinates A(3,3),B(2,5),C(4,3) complete transformation. Complete double reflection over the lines y=2 followed by y=0.​

Answers

9514 1404 393

Answer:

A"(3, -1)B"(2, 1)C"(4, -1)

Step-by-step explanation:

Reflection over 'a' then over 'b' will result in a translation of 2(b -a). Here, we have a=2, b=0, so the translation is 2(0-2) = -4. The reflection is over horizontal lines, so the transformation is ...

  (x, y) ⇒ (x, y -4)

  A(3, 3) ⇒ A"(3, -1)

  B(2, 5) ⇒ B"(2, 1)

  C(4,3) ⇒ C"(4, -1)

Which graph shows the quadratic function y = 3x2 + 12x + 10? (5 points)

The following graph is labeled A: A four quadrant graph with a parabola opening up, passing through the points negative 3, 1, negative 2, negative 2, and negative 1, 1 with the vertex at 2, negative 2. The following graph is labeled B: A four quadrant graph with a parabola opening up, passing through the points 1, 4, 2, 1, and 3, 4 with the vertex at 2, 1. The following graph is labeled C: A four quadrant graph with a parabola opening up, passing through the points negative 3, 5, negative 2, 2, and negative 1, 5 with the vertex at negative 2, 2. The following graph is labeled D: A four quadrant graph with a parabola opening up, passing through the points 1, 1, 2, negative 2, and 3, 1 with the vertex at 2, negative 2.

Answers

Answer:

The correct graph is A.

Answer:

A i got it right

Step-by-step explanation:

RATE OF CHANGE:
At the bakery shop, each baker works at his or her own speed, making the same
number of cakes each day. Marissa makes 28 cakes in 2 weeks, Carlos makes 60
cakes in 20 days, and Shelby makes 5 cakes in 2 days.
When the shop owner graphs the relationship between the number of cakes
made and days, who has the steepest graph? Explain.

Answers

Answer:

Carlos

Step-by-step explanation:

Hope this helps

Suppose a young sedentary woman wanted to lose 30 pounds of body fat in a period of 20 weeks. She now weighs 160 pounds and her activity level is such so she needs 15 Calories per pound of body weight to maintain her weight. Calculate the number of Calories she may consume daily in order to lose the 30 pounds by diet only. 1,000 1,250 1,400 1,650 1,900

Answers

Answer:

The answer is "1900"

Step-by-step explanation:

It takes 500 fewer calories per day for her to lose 1 lb of weight every week.

[tex]\to (15 \times 160)-500 =(2400)-500 =2400-500=1900[/tex]

Assume that human body temperatures are normally distributed with a mean of 98.19 and a standard deviation of 0.61

Answers

Answer:

Ok I'm assuming that know what??

Step-by-step explanation:

What is the extreme value of the polynomial function f(x)= x2 - 4?

Answers

Answer:

+∞.

Step-by-step explanation:

That would be positive infinity.

The extreme value of the given polynomial [tex]f(x) = x^{2} -4[/tex] is ∞.

What is extreme value of a polynomial?

Extreme values of a polynomial are the peaks and valleys of the polynomial—the points where direction changes.

What are the steps of finding the extreme value of any polynomial?

The following steps which are required to find the extreme value of polynomial are:

Arrange the polynomial into the the form of [tex]ax^{2} +bs+c[/tex] where a, b and c are numbers.Determine whether a, the coefficient of the [tex]x^{2}[/tex] term, is positive or negative.If the term is positive, the extreme value will be the infinity because the value will continue to grow as x increases.If it is negative, use the formula [tex]\frac{-b}{2a}[/tex] to find the value for extreme. And then plug [tex]x = \frac{-b}{2a}[/tex] in the original polynomial to calculate the extreme value of the polynomial.

According to the given question.

We have a polynomial

[tex]f(x) = x^{2} -4[/tex]

Since, in the given polynomial the coefficient of [tex]x^{2}[/tex] is positive . Therefore, the extreme value of the given polynomial is infinity because the value will continue to grow as x increases.

Hence, the extreme value of the given polynomial [tex]f(x) = x^{2} -4[/tex] is ∞.

Find out more information about extreme value of a polynomial here:

https://brainly.com/question/16597253

#SPJ2

HELP ASAP PIC IS BELOW!!!

Answers

Answer:

55°

Step-by-step explanation:

Vertical angles are similar

Answered by GAUTHMATH

Problem 2 find m<GEF​

Answers

Answer:

m<GEF = 66°

Step-by-step explanation:

(72+60)/2

= 132/2

= 66

Answered by GAUTHMATH

Can someone help me solve this and explain how to solve if possible please?

Answers

The length of road is the range and the time
in days is the domain. Any measure of time, like years, days, minutes will always be the independent variable, D. What does it mean by set of values?

helppppp plsss ??? plssss ??

Answers

Answer:

3 is correct dear

i hope it will help u

prove that.

lim Vx (Vx+ 1 - Vx) = 1/2 X>00 ​

Answers

Answer:

The idea is to transform the expression by multiplying [tex](\sqrt{x + 1} - \sqrt{x})[/tex] with its conjugate, [tex](\sqrt{x + 1} + \sqrt{x})[/tex].

Step-by-step explanation:

For any real number [tex]a[/tex] and [tex]b[/tex], [tex](a + b)\, (a - b) = a^{2} - b^{2}[/tex].

The factor [tex](\sqrt{x + 1} - \sqrt{x})[/tex] is irrational. However, when multiplied with its square root conjugate [tex](\sqrt{x + 1} + \sqrt{x})[/tex], the product would become rational:

[tex]\begin{aligned} & (\sqrt{x + 1} - \sqrt{x}) \, (\sqrt{x + 1} + \sqrt{x}) \\ &= (\sqrt{x + 1})^{2} -(\sqrt{x})^{2} \\ &= (x + 1) - (x) = 1\end{aligned}[/tex].

The idea is to multiply [tex]\sqrt{x}\, (\sqrt{x + 1} - \sqrt{x})[/tex] by [tex]\displaystyle \frac{\sqrt{x + 1} + \sqrt{x}}{\sqrt{x + 1} + \sqrt{x}}[/tex] so as to make it easier to take the limit.

Since [tex]\displaystyle \frac{\sqrt{x + 1} + \sqrt{x}}{\sqrt{x + 1} + \sqrt{x}} = 1[/tex], multiplying the expression by this fraction would not change the value of the original expression.

[tex]\begin{aligned} & \lim\limits_{x \to \infty} \sqrt{x} \, (\sqrt{x + 1} - \sqrt{x}) \\ &= \lim\limits_{x \to \infty} \left[\sqrt{x} \, (\sqrt{x + 1} - \sqrt{x})\cdot \frac{\sqrt{x + 1} + \sqrt{x}}{\sqrt{x + 1} + \sqrt{x}}\right] \\ &= \lim\limits_{x \to \infty} \frac{\sqrt{x}\, ((x + 1) - x)}{\sqrt{x + 1} + \sqrt{x}} \\ &= \lim\limits_{x \to \infty} \frac{\sqrt{x}}{\sqrt{x + 1}+ \sqrt{x}}\end{aligned}[/tex].

The order of [tex]x[/tex] in both the numerator and the denominator are now both [tex](1/2)[/tex]. Hence, dividing both the numerator and the denominator by [tex]x^{(1/2)}[/tex] (same as [tex]\sqrt{x}[/tex]) would ensure that all but the constant terms would approach [tex]0[/tex] under this limit:

[tex]\begin{aligned} & \lim\limits_{x \to \infty} \sqrt{x} \, (\sqrt{x + 1} - \sqrt{x}) \\ &= \cdots\\ &= \lim\limits_{x \to \infty} \frac{\sqrt{x}}{\sqrt{x + 1}+ \sqrt{x}} \\ &= \lim\limits_{x \to \infty} \frac{\sqrt{x} / \sqrt{x}}{(\sqrt{x + 1} / \sqrt{x}) + (\sqrt{x} / \sqrt{x})} \\ &= \lim\limits_{x \to \infty}\frac{1}{\sqrt{(x / x) + (1 / x)} + 1} \\ &= \lim\limits_{x \to \infty} \frac{1}{\sqrt{1 + (1/x)} + 1}\end{aligned}[/tex].

By continuity:

[tex]\begin{aligned} & \lim\limits_{x \to \infty} \sqrt{x} \, (\sqrt{x + 1} - \sqrt{x}) \\ &= \cdots\\ &= \lim\limits_{x \to \infty} \frac{\sqrt{x}}{\sqrt{x + 1}+ \sqrt{x}} \\ &= \cdots \\ &= \lim\limits_{x \to \infty} \frac{1}{\sqrt{1 + (1/x)} + 1} \\ &= \frac{1}{\sqrt{1 + \lim\limits_{x \to \infty}(1/x)} + 1} \\ &= \frac{1}{1 + 1} \\ &= \frac{1}{2}\end{aligned}[/tex].

Answer:

Hello,

Step-by-step explanation:

[tex]\displaystyle \lim_{x \to \infty} \sqrt{x}*(\sqrt{x+1}-\sqrt{x} ) \\\\\\= \lim_{x \to \infty}\dfrac{ \sqrt{x}*(\sqrt{x+1}-\sqrt{x} )*(\sqrt{x+1}+\sqrt{x} )}{\sqrt{x+1} +\sqrt{x} } \\\\= \lim_{x \to \infty} \dfrac{\sqrt{x} *1}{\sqrt{x+1} +\sqrt{x} } \\\\\\= \lim_{x \to \infty} \dfrac{1} {\sqrt {\dfrac {x+1} {x} }+\sqrt{\dfrac{x}{x} } } \\\\\\=\dfrac{1} {\sqrt {1}+\sqrt{1} } \\\\\\=\dfrac{1} {2} \\[/tex]

Teresita wanted to buy a dress for $50, but she decided to wait because she didn't have
enough money. A week later, the price had gone up 20%. Now she definitely had to wait to
buy it. A week later, she went back to the store, and the price had gone down 20% from the
last price. Teresita finally bought the dress. What did she pay for it?

Answers

Answer:

$48

Explanation:

> 50 x .20 = $10

$50 + $10= $60

-----------------------------

> 60 x .20 = $12

$60 - $12= $48

Choose the correct elements in the set for the following:


{y | y is an integer and y >/= -3}


{3, 4, 5, 6, . . .}

{−2, −1, 0, 2, . . .}

{−1, 0, 1, 2, . . }

{−3, −2, −1, 0, . . .}


****PLEASE explain your answer****

Answers

Answer:

D

Step-by-step explanation:

Y => - 3 that is {−3, −2, −1, 0, . . .}

help. WORTH 15 POINTS!!!

Answers

Answer:

x=27

Step-by-step explanation:

The sum of the angles of a triangle are 180 degrees

90 + x+15 + 2x-6 = 180

Combine like terms

3x+99=180

Subtract 99 from each side

3x+99-99=180-99

3x =81

Divide each side by 3

3x/3 = 81/3

x=27

Use the distributive property to find the product of the rational number.
5/2 (- 8/5 + 7/5)

Answers

9514 1404 393

Answer:

  -1/2

Step-by-step explanation:

The factor outside parentheses multiplies each term inside.

  5/2(-8/5 +7/5)

  = (5/2)(-8/5) +(5/2)(7/5)

  = -8/2 +7/2 = -1/2

Other Questions
le gouvernment The noun in plural With the goal of keeping your hardware safe, explain the physical hazards you should avoid. Which of the following describes email nonrepudiation?A. the elimination of emails that may contain dangerous virusesB. the review of every email sent by the CIAC. the use of tracking methods that can identify senders and their locationsD. the use of encryption methods that ensure senders and their locations cannot be identified CU1A baby gains 11 pounds in its first year of life. The baby gained 4 a pounds during the first four months and 35 pounds inits second four months. How much did the baby gain in the last four months?o 31 poundso 33 poundsO 4 poundsO 5 poundsMark this and returnSave and ExitNextSubmit Help help help math math al dividir A entre 23 se obtuvo 247 de cociente y el residuo fue el maximo. hallar A a)5242 b)5436 c)5703 d)5332 solo esas 4 alternativas tienen que salirte y respondan con resolucion plss If Ambrea deposits $4000 in the bank and there is a 3% interest rate, how long will it take her to save $7000 List 4 activities that require safety equipment and explain why its important towear safety gear for these activities. Which statements best describe how to write titles?Select each correct answer.Place the titles of shorter works in quotation marks.When typing, italicize the titles of longer works.When writing, underline the titles of longer works.Place the titles of shorter works in bold print. 2 times the difference of 5 and 3 PLEASEEEEEEEEEEE HELP MEEEEE IM TIMED ILL GIVE BRAINLIEST 50 POINTS!!!Read the excerpt from Team Moon.The trouble with option 2 was that the venting might push the fuel to an unstable condition. Or, another possible outcome of the burping: what if the landing gear hadnt deployed correctly? Could any movement, or any resulting burstno matter how smalltip the LM over? Many a voice in the debate thought the safest option was to abortnow! But that opinion was quickly overruled by the Grumman and NASA leadership (who were confident of the landing gear), and the consensus of the leaders was that it would be safe to gently, gently burp the engine.Why does the author use a problem-solution text structure in the paragraph?to help the reader understand the astronauts feelings about the landingto help the reader understand the intense pressure of the situationto help the reader understand the similarities between the leaders optionsto help the reader understand the process of burping an engine [URGENT NEED ANSWER!!!!!]Mettez en ordre1.examen/ un/avons /eu/ de/nous/hier /franais. 2. ai / derrire / vu / larbre / quelquun / j 03.02 MC) What do weather and climate have in common? the bradford assay only works at low protein concentrations how many earths can fit in the sun can someone plz explain and gimme the answer... solve one step equation x/4 = 16 How does the computer help me with school work 8 is 16% of (blank) please help (: How did Raphael use atmospheric perspective in this painting?