If Wilt were still only a 56% shooter, the probability that he would make at least 34 of his shots is about 0,03.The correct option is a
To perform this simulation, we can use a computer program to generate a random number between 0 and 1 for each shot.
If the random number is less than or equal to 0.56, then the shot is counted as a make. We can then repeat this process 50 times and count the number of shots that were made.
We can repeat this process many times, and count the proportion of times that 34 or more makes are achieved. This proportion is the estimated probability that a 56% free-throw shooter would make 34 or more in a sample of 50 shots.
Hence a) If Wilt were still only a 56% shooter, the probability that he would make at least 34 of his shots is about 0,03.
For more questions like Probability click the link below:
brainly.com/question/8942260
#SPJ4
For this exercise, use the position function s(t) = −4.9t^2 + 160, which gives the height (in meters) of an object that has fallen for t seconds from a height of 160 meters. The velocity at time t = a seconds is given by lim t→a s(a) − s(t) a − t . When will the object hit the ground? At what velocity, v, will the object impact the ground?
Answer:
5
Step-by-step explanation:
u just know
e solid has a triangular base in the x y-plane. the solid has ---select--- in the x z-plane. the solid has ---select--- in the y z-plane. the solid has ---select--- in the plane z
The triangular base in the xy plane can be described by the equation y = mx + b, where m is the slope of the line and b is the y-intercept.
In the xz plane, the solid has a plane defined by the equation z = f(x). This equation can be derived from the equation of the base by substituting the y values with the corresponding mx + b values. Similarly, in the yz plane, the solid has a plane defined by the equation z = g(y). This equation can be derived from the equation of the base by substituting the x values with the corresponding (y - b)/m values. To calculate the area of the solid, we can use the formula A = 1/2h(b1 + b2), where h is the height of the solid and b1 and b2 are the lengths of the two bases. The area of the solid can then be found by substituting the appropriate values into this formula.
Learn more about triangular base here:
https://brainly.com/question/16909441
#SPJ4
which of the following shows a correct side-by-side bar chart with store location on the horizontal axis and side-by-side bars of the percentage of time spent on each task?
The resulting bar chart would show that in Store A, the employees spend 30% of their time on stocking, 40% on cashiering, and 30% on cleaning.
To create a side-by-side bar chart for this data, we would first organize the data into a table with store locations as the rows and tasks as the columns. Each cell in the table would contain the percentage of time spent on that task at that store location.
For example, the table might look like this:
Stocking Cashiering Cleaning
Store A 30% 40% 30%
Store B 25% 35% 40%
Store C 35% 25% 40%
To create the bar chart, we would then place the store locations on the x-axis and use different colors to represent the different tasks. The length of each bar would correspond to the percentage of time spent on that task at that store location.
The resulting bar chart would show that in Store A, the employees spend 30% of their time on stocking, 40% on cashiering, and 30% on cleaning.
Similarly, the chart will provide an easy visual representation of the time spent on each task at each store location.
Learn more about bar charts here:
https://brainly.com/question/30119156
The complete question is -
The management of a retail company wants to analyze the time spent by employees on different tasks at different store locations. The data collected shows the percentage of time spent on tasks such as stocking, cashiering, and cleaning at three store locations: Store A, Store B, and Store C. Create a side-by-side bar chart to represent this data and analyze the results.
#SPJ4
What equation(s) represent the vertical asymptote(s) of the graph of y = 1/x^2 -4? J) x= -4 and x =4 K) x= -2 and x =2 L) x= 0 only M) x= 2 only N) x= 4 only
The denominator of the function, n(x), is the place where vertical asymptotes can be located. If the numerator, t(x), is not zero for the same value of x, then the vertical asymptotes can be determined by solving the equation n(x) = 0 where n(x) is the denominator.
How to find the calculation?Despite not being a part of the function graph, a vertical asymptote is a vertical line that serves as a guide.
It happens at an x-value that is outside the function's domain, therefore the graph can never cross it.
1/x^2 -4
Domain of 1/x² - 4 :
Solution : x < -2 or -2 < x < 2 or x > 2
Interval Notation ; ( -∝ , -2) ∪ (-2 ,2) ∪ (2 , ∝).
Range of 1 / x² - 4 :
Solution : f(x) ≤ - 1/4 or f(x) > 0
Interval Notation : ( -∝ , - 1/4) ∪ (0,∝)
Axis interception points of 1 / x² - 4 :
y Intercepts : (0 , - 1/4)
Asymptotes of 1 / x² - 4:
Verticals x = -2. x = 2,
Horizontal y = 0
Extreme Points of 1/x² - 4 :
Maximum (0, -1/4).
To Learn more About vertical asymptotes refer To:
https://brainly.com/question/26124207
#SPJ1
I am a number. If you know the sum of 14 and 6 that will help you. I am that sum sqquered. I am
Answer: 4.4
Step-by-step explanation:
Answer:
400
Step-by-step explanation:
let the number be x
x= (14+6)²
x= 20²
x=400
Shade each model. Then write each fraction as a decimal
Answer: 0.25
Step-by-step explanation:
1/4 = 0.25
what is the slope through the line of (9, 10) and (7, 2)
The slope of a line is calculated as the change in the y-coordinates (rise) divided by the change in the x-coordinates (run). Using the coordinates (9, 10) and (7, 2), we can calculate the slope as:
(10 - 2) / (9 - 7) = 8 / 2 = 4
So, the slope through the line of (9, 10) and (7, 2) is 4.
Match the following:
Whole Number:
Fraction:
Answer Choices: If the similar figure is smaller than the original then the scale factor is a ______. If the similar figure is larger than the original then the scale factor is a __________
If the similar figure is smaller than the original then the scale factor is a fraction. If the similar figure is larger than the original then the scale factor is a whole number.
How do scale factors work ?The scale factor is a ratio that compares the corresponding side lengths of two similar figures. If the similar figure is smaller than the original, the scale factor is a fraction less than 1, for example, 2/3 or 3/4. This means that the corresponding side lengths of the similar figure are 2/3 or 3/4 of the corresponding side lengths of the original figure.
On the other hand, if the similar figure is larger than the original, the scale factor is a whole number greater than 1, for example, 2 or 3.
Find out more on scale factors at https://brainly.com/question/29967135
#SPJ1
use the definition of continuity and the properties of limits to show that the function is continuous at the number a
Continuity is the formulation of a function that varies with no breaks or jumps. The concepts of limits and continuity have been used to show that the function is continuous at the number a below.
If a graph has no holes asymptotes or breaks at any point then the function is said to be continuous. Or if we can draw the function without lifting our pen then it is called continuous.
The conditions which it should satisfy are,
1)The limit must exist at that point.
2) The function must be defined at that point, and
3)The limit and the function must have equal values at that point. So,
A function f(x) is said to be continuous at x=a if,
lim f(x) = f(a)
x→a
A function is said to be continuous on the interval [a,b] if it is continuous at each point in the interval.
Learn more about Continuity on
https://brainly.com/question/24898810?referrer=searchResults
#SPJ4
In the town of Tower Hill, the number of cell phones in a household is a random variable W with the following distribution:
W 0 1 2 3 4 5
P(W) 0.1 0.1 0.25 0.3 0.2 0.05
The probability that a randomly-selected household has at least two cell phones is
A. 0.20.
B. 0.25.
C. 0.55.
D. 0.70.
E. 0.80.
Answer:
the answer is alphabet c
For a melon selected at random from distributor j, what is the probability that the melon will have a diameter greater than 137 mm?
The probability that the melon will have a diameter greater than 137 mm is 21.19%.
What is probability?Probability is a way to gauge how likely something is to happen. According to the probability formula, the likelihood that an event will occur is equal to the proportion of positive outcomes to all outcomes. The probability that an event will occur P(E) is equal to the ratio of favorable outcomes to total outcomes. The likelihood of an event occurring might range from 0 to 1.
Given A grocery store purchases melons from two distributors, J & K,
for distributor J,
mean of melons = μ = 133 mm
standard deviation = σ = 5 mm
to find the probability that the melon will have a diameter greater than 137 mm,
x = 137 mm
P(x > 137)
using z score formula
z = (x - μ)/σ
z = (137 - 133)/5
z = 0.8
P-value from Z-Table:
P(x < 137) = 0.78814
P(x > 137) = 1 - P(x < 137) = 0.21186
probability in percent = P(x > 137) = 0.21186*100 = 21.186%
P(x > 137) = 21.19%
Hence probability for melon will have a diameter greater than 137 mm is 21.19%.
Learn more about probability;
brainly.com/question/30034780
#SPJ1
The complete question is,
A grocery store purchases melons from two distributors, J & K. Distributor J provides melons from organic farms. The distribution of the diameters of the melons from distributor J is approximately normal with mean with 133 millimeters and standard deviation 5 mm. For a melon selected at random from distributor J, what is the probability that the melon will have a diameter greater than 137mm?
For the function v (t) = 4t² - 6t + 2, determine the value(s) of t on the closed interval [0, 3] where the value of the derivative is the same as the average rate of change.
The slope of a secant line or the average rate of change over a relatively brief period of time can be used to approximate the derivative. The closer the interval is to the actual instantaneous rate of change, slope of the tangent line, or slope of the curve, the more accurate the result is.
What is average rate?Average Rate is a single rate that applies to property at many locations and is calculated as the weighted average of the separate rates that are appropriate at each site. Examples of average rates of change include: 80 kilometers per hour is the average speed of a bus. At a pace of 100 each week, a lake's fish population grows. For every 1 volt drop in voltage, the current in an electrical circuit reduces by 0.2 amps.Divide the y-value change by the x-value change to determine the average rate of change. When analyzing changes in observable parameters like average speed or average velocity, finding the average rate of change is extremely helpful.Therefore,
[tex]& \int_0^6\left|t^2-8 t+12\right| d t \quad \quad \text { Distance traveled over }[a, b] \\[/tex]
[tex]\int_0^2 t^2-8 t+12 d t+-\int_2^6 t^2-8 t+12 d t & \text { distance }=\int_a^b\left|x^{\prime}(t)\right| d t \\[/tex]
[tex]t^2-8 t+12=0[/tex]
To learn more about average rate, refer to:
https://brainly.com/question/24313700
#SPJ4
Dinesh is a mason and he takes Rs 3,250 for 5 days working everyday. If he received only Rs 7,800 in two weeks, how many days was he absent in his work?
Answer:
2 days
Step-by-step explanation:
He was paid 3,250 for 5 days that means 1 day is 3250/5 = 650
So, then 7,800/650 = 12 days(number of days he came to work) but two weeks is 14 days so the number of days he was absent was 14-12= 2
Question 8
Find the measure of each angle indicated
47
We know the angles in a triangle add up to 180 degrees. Adding the two angles we know, ( 47 and 86) we get 133. Simply subtract 133 from 180 to get 47 degrees.
which expression is equivalent to 5M-3N when M=3x-2 and N=2x-5
A9x+5
B9x-25
C21x+5
D21x-25
Answer:
A. 9x+5
Step-by-step explanation:
[tex]5(3x-2)-3(2x-5)\\15x-10-6x+15\\9x+5[/tex]
Find the perimeter of the following trapezoid:
Answer:
17 feet
Step-by-step explanation:
perimeter is the measurement of the border of a shape
2.5 + 6 + 8 + 2.5 = 17
Chris baked 45 cookies. His family are n of them. Using n, write an expression for the number of cookies that remained
The expression that shows the number of cookies that remained is:
C = 45 - n
How many cookies remained?We know that Crhis baked a total of 45 cookies, and his family ate n of them.
The number of cookies that remained is equal to the difference between the initial amount, which is 45, and the number of cookies that the family ate, which is n.
(Where a difference refers to a subtraction)
Then the expression for the number of cookies that remained is:
cookies = 45 - n
That is the expression that depends on the value n.
Learn more about expressions by reading:
https://brainly.com/question/723406
#SPJ1
given the 27 blocks represented by the mccumber cube; give an example item which would fulfill any 9 of the blocks.
The McCumber Cube, which bears the name of its inventor, John McCumber, demonstrates the interdependence of the many elements of information security.
What is the McCumber Cube used for?
The McCumber Cube, which bears the name of its inventor, John McCumber, demonstrates how the many elements of information security are interconnected. You may view availability, integrity, and confidentiality on one side. All three of these include crypto in a significant way.
Information Characteristics, Information States, and Security Countermeasures are the three McCumber cube dimensions. The three CIA triangle pillars of confidentiality, integrity, and availability make up information characteristics.
The McCumber Cube, which John McCumber developed in 1991, is a reference framework for developing and assessing information security (also known as information assurance) initiatives. This security model is presented as a grid that resembles the Rubik's Cube in three dimensions.
The McCumber Cube shows three proportions. If theorized, the three dimensions of each axis become a 3 × 3 × 3 cube with 27 cells representing areas that must be addressed to secure today’s information systems. To ensure system security, each of the 27 areas must be properly addressed during the security process (McCumber, 1991).
Learn more about McCumber Cube refer to :
brainly.com/question/14283658
#SPJ4
WHAT IS THIS?: Evaluate 4+ (m - n)^4 when m = 7 and n =5.
Evaluation of 4+ (m - n)^4 when m = 7 and n =5 is -108
What is Foil method?To combine binomials, utilize the FOIL Method.
An abbreviation is F O I L. First, Outside, Inside, and Last are represented by the letters, denoting the sequence of multiplying terms. For your solution, multiply the first word, an outside term, the inside term, the very last term, and then join like terms.
FOIL specifies the specific terms to multiply and their order.
First - multiply the first terms
Outside - multiply the outside/outer terms
Inside - multiply the inside/inner terms
Last - multiply the last terms
Given;
4+ (m - n)^4
m=7, n=5
Now, the binomial formula of (m - n)^4 by foil method
=m^4-4m^3n+6m^2n^2-4mn^3+n^4
=2401-4(343)(5)+6(49)(25)-4(7)(125)+500
=2401-6860+7350-3500+500
=-109
Therefore, the value of expression by foil method will be -109
To know more about foil method:
brainly.com/question/28527940
#SPJ1
Determine how many two-digit numbers satisfy the following property: when the number is added to the number obtained by reversing its digits, the sum is $132.$
$\textbf{(A) }5\qquad\textbf{(B) }7\qquad\textbf{(C) }9\qquad\textbf{(D) }11\qquad \textbf{(E) }12$
132 is the total of all two-digit numbers and their reversal digits. The solution is (C) 9. Nine two-digit numbers, including 21 + 12 = 33, 32 + 23 = 55, 43 + 34 = 77, 54 + 45 = 99, 65 + 56 = 121, 76 + 67 = 143, 87 + 78 = 165, 98 + 89 = 187, and 109 + 901 = 132, meet this characteristic.
132 is the total of all two-digit numbers and their reversal digits. We must look at all potential two-digit numbers and add the number to its reversed digits in order to count the number of two-digit numbers that satisfy this property. The range of the two-digit numbers is 10 to 99. Starting with the number 11, which does not satisfy the stated criteria because 10 + 01 = 11 is not equal to 132. Then, we will look at 11 + 11, which is not equal to 132, and find that it is 22. This method will be repeated until a two-digit number is found that meets the specified attribute. As an illustration, 21 + 12 Equals 33, which is not the same as 132. This technique will be repeated until a two-digit number, such as 65 + 56 = 121, is found that satisfies the property. This operation will be repeated until nine two-digit values, such as 109 + 901 = 132, satisfy the property. As a result, the response is (C) 9.
Learn more about reversal digits here
https://brainly.com/question/2142858
#SPJ4
Squaroot of p^10 where p>0
Answer:
p^5
Step-by-step explanation:
p^10/2=p^5
HELP!!!!! Brainliest!!!
Pic
The slope of the given linear relationship is 5 (A).
From the question, we have 5 different points that create a linear relationship. To determine the slope of the linear relationship, we can choose 2 random sequence points.
We might choose:
Point 1 = (0,-2)
Point 2 = (1,3)
We can find the slope of the relationship using formula of:
m = y2 - y1
x2 - x1
m = 3- (-2)
1 - 0
m = 5
1
m = 5
To ensure our finding, we can choose another pair of random points, for example:
P1 = (-2, -12)
P2 = (-1, -7)
We can use the slope formula:
m = y2 - y1
x2 - x1
m = -7 - (-12)
-1 - (-2)
m = 5
1
m = 5
Hence, the slop of the linear relationship between all the given points are 5.
Learn more about Slope here: brainly.com/question/29291376
#SPJ1
consider a grid of points. find the number of squares with all their vertices belonging to the points of this grid.
The number of squares that can be formed on a grid with n points on one side is (n² - (n-1)²).
The number of squares that can be formed with all their vertices belonging to the points of a grid can be calculated using the formula:
n² - (n-1)²
where n is the number of points on one side of the grid.
This is because there are n² total points on the grid, and each point can be used as a vertex for n-1 squares (when n>1) in the horizontal and vertical directions. However, each of these squares is counted twice, once for each corner point. So we subtract (n-1)² to account for the overcounting.
For example, if there are 4 points on one side of the grid, the number of squares that can be formed is 4² - (4-1)² = 16 - 9 = 7 squares.
In general, the number of squares that can be formed on a grid with n points on one side is (n² - (n-1)²).
To learn more about the grid of points at
https://brainly.com/question/11618662?referrer=searchResults
#SPJ4
Express 2x=5 in the form of ax+ by+c=0 and find the value of a,b and c
Answer:
[tex]2x = 5 \\ 2x + 0y - 5 = 0 \\ a = 2 \\ b = 0 \\ c = - 5[/tex]
Congress is debating a proposed law to reduce tax rates. If the current tax rate is r%, then the proposed rate after x years is given by this formula: r/1+1/1+1rRewrite this formula as a simple fraction. Use your formula to calculate the new tax rate after 1 year, 2 years, 5 years, and 15 years. 1 year____2 years____5 years___15 years____
Would tax rates increase or decrease over time? O increase O decrease Congress claims that this law would ultimately cut peoples' tax rates by 75%. Do you believe this claim? Explain.
The simple fraction is [tex]= \frac{x + 1}{2x + 1}r[/tex]
In math, what is a fraction?
A fraction is a piece of the entire. In mathematics, the number is represented as a quotient, where the numerator and denominator are divided. Both are integers in a straightforward fraction.
Whether it is in the numerator or denominator, a complex fraction contains a fraction. The numerator and denominator of a correct fraction are opposite each other.
[tex]= \frac{r}{1 + \frac{1}{\frac{1 + 1/x }{} } }[/tex]
[tex]= 1 + 1/x[/tex]
= x + 1/x we have
= [tex]\frac{1}{x + 1/x}[/tex]
[tex]= \frac{x}{x + 1}[/tex]
[tex]= 1 + \frac{x}{x + 1}[/tex]
[tex]= \frac{ 2x + 1}{x + 1}[/tex]
r%*x+1/(2x+1)
[tex]= \frac{x + 1}{2x + 1}r[/tex]
reduce to the appropriate fraction. The denominator was then brought up and the numerator down as I normalized.
Learn more about fraction
brainly.com/question/10354322
#SPJ4
The complete question is -
Congress is debating a proposed law to reduce tax rates. If the current tax rate is r%, then the proposed rate after x years is given by this formula: r 1 1 1 1 x . Rewrite this formula as a simple fraction.
"The solid has ( a circular base, a trapezoidal base, a triangular base, or a rectangular base) in the xy-plane.
The solid has ( a circular face, a trapezoidal face, a triangular face, or a rectangular face) in the xz-plane.
The solid has ( a circular face, a trapezoidal face, a triangular face, or a rectangular face) in the yz-plane.
The solid has ( a circular face, a trapezoidal face, a triangular face, or a rectangular face) in the plane z = 1 - x.
The solid has ( a circular face, a trapezoidal face, a triangular face, or a rectangular face) in the 0plane y = 9 - 9z.
As x increases, the top of the region (decreases, increases, or remains constant).
As y increases, the top of the region (decreases, increases, or remains constant)."
The solid has a triangular face in the xy-plane.
The solid has a rectangular face in the xz-plane.
The solid has a trapezoidal face in the yz-plane.
The solid has a triangular face in the plane z = 1 - x.
The solid has a rectangular face in the plane y = 9 - 9z.
As x increases, the top of the region decreases.
As y increases, the top of the region remains constant.
The solid whose volume is given by the iterated integral, integral 0 to 1 integral 0 to (1-x) integral 0 to (9 - 9z) dy dz dx. This is a three-dimensional solid, that has been defined by three nested integrals. The outer integral is with respect to x, the second integral is with respect to y and the inner integral is with respect to z.
In the xz-plane, the solid has a rectangular face: the integral bounds for x are 0 to 1 and for z, it is 0 to (9 - 9z)
In the yz-plane, the solid has a trapezoidal face: the integral bounds for y are 0 to (1-x) and for z, it is 0 to (9 - 9z)
In the plane z = 1 - x, the solid has a triangular face: the integral bounds for x are 0 to 1 and z = 1 - x
In the plane y = 9 - 9z, the solid has a rectangular face: the integral bounds for y are 0 to (1-x) and y = 9 - 9z
As x increases, the top of the region decreases: the limit for y decreases from 9 to 0 as x increases from 0 to 1
As y increases, the top of the region remains constant: y = 9 - 9z is a constant value, as y increases, the integral bounds for z decrease from 9 to 0
This solid is a rectangular pyramid with a trapezoidal base. The rectangular face is located in the xz-plane, the trapezoidal face is located in the yz-plane, the triangular face is located in the plane z = 1
--The question is incomplete, answering to the question below
"The solid whose volume is given by the iterated integral,
∫ [0 to 1] ∫ [0 to (1-x)] ∫ [0 to (9 - 9z)] (dy dz dx)
The solid has ( a circular face, a trapezoidal face, a triangular face, or a rectangular face) in the xz-plane.
The solid has ( a circular face, a trapezoidal face, a triangular face, or a rectangular face) in the yz-plane.
The solid has ( a circular face, a trapezoidal face, a triangular face, or a rectangular face) in the plane z = 1 - x.
The solid has ( a circular face, a trapezoidal face, a triangular face, or a rectangular face) in the plane y = 9 - 9z.
As x increases, the top of the region (decreases, increases, or remains constant).
As y increases, the top of the region (decreases, increases, or remains constant)."
To know more on iterated integral
https://brainly.com/question/29850014
#SPJ4
What is the equation of the transformed function, g(x), after the transformations are applied to the graph of
the base function f(x)=√x to obtain the graph of g(x)?
A g(x) +4=√√√x+4
B g(x)=√√x+4 +5
C g(x) +5=√√x+4
D g(x)=√√x+5+4
Check the picture below, that's just a transformations template
so since we know that f(x) = √x, that means when x = 0, y = 0, so it touches the origin, so f(x) is the graph down below.
now, f(x) has moved to the left by 5 units and up by 4 units, based on the template that means C = 5 and D = 4 whilst B = 1
[tex]g(x)=\stackrel{A}{1}\sqrt{\stackrel{B}{1}x+\stackrel{C}{5}} ~~ +\stackrel{D}{4}\implies g(x)=\sqrt{x+5} ~~ +4[/tex]
Write the expression in simplest form. 5/3-√2=
Answer:
[tex] \sf \: \frac{5 - 3 \sqrt{2} }{3} [/tex]
Step-by-step explanation:
Given expression,
→ (5/3) - √2
Let's simplify the expression,
→ (5/3) - √2
→ (5/3) - ((√2 × 3)/(1 × 3))
→ (5/3) - (3√2/3)
→ (5 - 3√2)/3
Hence, answer is (5 - 3√2)/3.
Answer:
[tex]\dfrac{15+5\sqrt{2}}{7}[/tex]
Step-by-step explanation:
Given rational expression:
[tex]\dfrac{5}{3-\sqrt{2}}[/tex]
To write the given rational expression in its simplest form we need to rationalise the denominator by multiplying both the numerator and denominator by the conjugate of the denominator.
The conjugate of an expression is where we change the sign in the middle of the two terms. Therefore, the conjugate of the denominator of the given expression is:
[tex]3+\sqrt{2}[/tex]Multiply the numerator and denominator by the conjugate of the denominator:
[tex]\dfrac{5}{3-\sqrt{2}} \cdot \dfrac{3+\sqrt{2}}{3+\sqrt{2}}[/tex]
Simplify:
[tex]\implies \dfrac{5(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}[/tex]
[tex]\implies \dfrac{15+5\sqrt{2}}{9+3\sqrt{2}-3\sqrt{2}-2}[/tex]
[tex]\implies \dfrac{15+5\sqrt{2}}{9-2}[/tex]
[tex]\implies \dfrac{15+5\sqrt{2}}{7}[/tex]
There were 20 dolphins near the shore. 15 more dolphins swam in. How many dolphins are near the shore now?
Answer: 35
Step-by-step explanation: 20 +15= 35
Suppose it takes 6.4 pounds of seed to completely plant one acre of land. Boris has 18.5 acres of land. Find the amount of seed he needs.
Answer:
1.2 Acres
Step-by-step explanation: